Quiz, March 28Th
Name:
Spherical Integration. Set up an integral which computes the volume of the region drawn below:

Line Integrals I. Compute the integral of the function $f(x, y)=x+y$ over the curve

$$
\begin{aligned}
& x(t)=t \\
& y(t)=t
\end{aligned}
$$

as $t$ goes from 0 to 1 .

Identify the Vector Field.


Bonus Problem. Let $C(t)=(r(t): \theta(t))$ be a polar parameterized curve, with $r(t)>0$ and $C(0)=C(1)$. Consider the vector field $\vec{F}=\left\langle y /\left(x^{2}+y^{2}\right),-x /\left(x^{2}+y^{2}\right)\right\rangle$. Show that

$$
\int_{C} \vec{F} \cdot d r
$$

counts the number of times that the curve $C$ winds around the origin.

