Quiz, March 28Th
0.1. Jacobians. Compute the integral of $f(x, y)=x y$ over the following region

by using the change of coordinates

$$
x=u+v \quad y=u-v
$$

Solution:For this, notice that this is given by $u \in[-1,1]$ and $v \in[1,3]$. The jacobian between these two coordinate systems is 2 , so our integral converts to

$$
\begin{aligned}
\int_{-1}^{1} \int_{1}^{3}(u+v)(u-v) 2 d v d u & =2 \int_{-1}^{1} \int_{1}^{3} u^{2}-v^{2} d v d u \\
& =2 \int_{-1}^{1} v u^{2}-v^{3} /\left.3\right|_{v=1} ^{v=3} d u \\
& =\int_{-1}^{1} 2 u^{2}-26 / 3 d u \\
& =2 / 3 u^{3}-26 /\left.3 u\right|_{-1} ^{1} \\
& =4 / 3-42 / 3
\end{aligned}
$$

0.2. Setting up triple integrals. Suppose the density of the following solid is given by $\rho(x, y, z)=x+y$.

Set up an integral which computes the mass of the object.
Solution:Let's take the order to be $d z d y d x$. Notice that x takes values between 0 and 1 , and that $0 \leq z \leq$ $1-x$ and $0 \leq y \leq 1-x$. (In particular, the bounds on z are not dependent on the y coordinate you are at,
and the bounds for y are not dependent on the z coordinate. A way to visualize this is that an $x z$ slice of this solid is a square.) Our integral comes out to be

$$
\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x} x+y d z d y d x
$$

0.3. Cylindrical Coordinates. Compute the integral of the function $f(x, y, z)=z+x^{2}+y^{2}$ over the region constrained by $0 \leq z \leq 1-\left(x^{2}+y^{2}\right)$. Use cylindrical coordinates.
Solution:This is not only a bound on z by x and y, but also a bound on r in the form of $0 \leq 1-r^{2}$. Since r must be positive, we can rewrite this bound as $0 \leq r \leq 1$. Our bounds of integration in cylindrical coordinates are

$$
\begin{gathered}
0 \leq r \leq 1 \\
0 \leq \theta \leq 2 \pi \\
0 \leq z \leq 1-r^{2}
\end{gathered}
$$

Setting up our integral, we have

$$
\begin{aligned}
\int_{0}^{2 \pi} \int_{0}^{1} \int_{0}^{1-r^{2}}\left(z+r^{2}\right) r d z d r d \theta & =\left.\int_{0}^{2 \pi} \int_{0}^{1}\left(z^{2} / 2+r^{2} z\right) r\right|_{0} ^{1-r^{2}} d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1}\left(\left(1-r^{2}\right)^{2} / 2+r^{2}\left(1-r^{2}\right)\right) r d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1}\left(\left(1-r^{2}\right)^{2} / 2+r^{2}\left(1-r^{2}\right)\right) r d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1}\left(1 / 2-r^{2}+r^{4} / 2+r^{2}-r^{4}\right) r d r d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{1} r / 2-r^{5} / 2 d r d \theta \\
& =2 \pi(1 / 4-1 / 10)
\end{aligned}
$$

Bonus Problem. Worth no credit! A napkin ring is made from taking a sphere of radius R, and drilling out of it a cylinder with the same axis of radius r. The resulting napkin ring has a height of $h=\sqrt{R^{2}-r^{2}}$. Show that the volume of a napkin ring only depends on h.

