QuiZ, MARCH 28TH

0.1. Jacobians. Compute the integral of f(z,y) = xy over the following region
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by using the change of coordinates
r=u+v Yy=u—v

Solution:For this, notice that this is given by u € [-1,1] and v € [1,3]. The jacobian between these two
coordinate systems is 2, so our integral converts to
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0.2. Setting up triple integrals. Suppose the density of the following solid is given by p(z,y,2) =+ y.
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Set up an integral which computes the mass of the object.

Solution:Let’s take the order to be dzdydz. Notice that = takes values between 0 and 1, and that 0 < z <

1—zand 0 <y <1-—z. (In particular, the bounds on z are not dependent on the y coordinate you are at,
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and the bounds for y are not dependent on the z coordinate. A way to visualize this is that an zz slice of
this solid is a square. ) Our integral comes out to be
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0.3. Cylindrical Coordinates. Compute the integral of the function f(z,y,z) = z + 2% + y* over the
region constrained by 0 < z < 1 — (22 4+ y?). Use cylindrical coordinates.

Solution:This is not only a bound on z by z and y, but also a bound on r in the form of 0 < 1 — 2.
Since r must be positive, we can rewrite this bound as 0 < r < 1. Our bounds of integration in cylindrical
coordinates are

Setting up our integral, we have
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Bonus Problem. Worth no credit! A napkin ring is made from taking a sphere of radius R, and drilling
out of it a cylinder with the same axis of radius r. The resulting napkin ring has a height of h = v R? — r2.
Show that the volume of a napkin ring only depends on h.



