Quiz, March 28th

0.1. Jacobians. Compute the integral of f(x, y) = xy over the following region

by using the change of coordinates

$$x = u + v$$
 $y = u - v$

Solution: For this, notice that this is given by $u \in [-1, 1]$ and $v \in [1, 3]$. The jacobian between these two coordinate systems is 2, so our integral converts to

$$\int_{-1}^{1} \int_{1}^{3} (u+v)(u-v) 2dv du = 2 \int_{-1}^{1} \int_{1}^{3} u^{2} - v^{2} dv du$$
$$= 2 \int_{-1}^{1} v u^{2} - v^{3} / 3|_{v=1}^{v=3} du$$
$$= \int_{-1}^{1} 2u^{2} - 26 / 3 du$$
$$= 2 / 3u^{3} - 26 / 3u|_{-1}^{1}$$
$$= 4 / 3 - 42 / 3$$

0.2. Setting up triple integrals. Suppose the density of the following solid is given by $\rho(x, y, z) = x + y$.

Set up an integral which computes the mass of the object.

Solution:Let's take the order to be dzdydx. Notice that x takes values between 0 and 1, and that $0 \le z \le 1 - x$ and $0 \le y \le 1 - x$. (In particular, the bounds on z are not dependent on the y coordinate you are at,

and the bounds for y are not dependent on the z coordinate. A way to visualize this is that an xz slice of this solid is a square.) Our integral comes out to be

$$\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x} x + y dz dy dx$$

0.3. Cylindrical Coordinates. Compute the integral of the function $f(x, y, z) = z + x^2 + y^2$ over the region constrained by $0 \le z \le 1 - (x^2 + y^2)$. Use cylindrical coordinates.

Solution: This is not only a bound on z by x and y, but also a bound on r in the form of $0 \le 1 - r^2$. Since r must be positive, we can rewrite this bound as $0 \le r \le 1$. Our bounds of integration in cylindrical coordinates are

$$0 \le r \le 1$$

$$0 \le \theta \le 2\pi$$

$$0 \le z \le 1 - r^2$$

Setting up our integral, we have

$$\begin{split} \int_{0}^{2\pi} \int_{0}^{1} \int_{0}^{1-r^{2}} (z+r^{2}) r dz dr d\theta &= \int_{0}^{2\pi} \int_{0}^{1} (z^{2}/2+r^{2}z) r |_{0}^{1-r^{2}} dr d\theta \\ &= \int_{0}^{2\pi} \int_{0}^{1} ((1-r^{2})^{2}/2+r^{2}(1-r^{2})) r dr d\theta \\ &= \int_{0}^{2\pi} \int_{0}^{1} ((1-r^{2})^{2}/2+r^{2}(1-r^{2})) r dr d\theta \\ &= \int_{0}^{2\pi} \int_{0}^{1} (1/2-r^{2}+r^{4}/2+r^{2}-r^{4}) r dr d\theta \\ &= \int_{0}^{2\pi} \int_{0}^{1} r/2-r^{5}/2 dr d\theta \\ &= 2\pi (1/4-1/10) \end{split}$$

Bonus Problem. Worth no credit! A *napkin ring* is made from taking a sphere of radius R, and drilling out of it a cylinder with the same axis of radius r. The resulting napkin ring has a height of $h = \sqrt{R^2 - r^2}$. Show that the volume of a napkin ring only depends on h.