

How do we integrate over this region? One of the subtle difficulties of integrating over polar region is that

- Functions that take values in polar coordinates (which describe the boundaries of the regions) are allowed to take on negative values for r. In this example $r(\theta)=2 \sin (\theta)+1$ is a perfectly good way of describing the boundary of the region we want to integrate over, even though it takes on a negative value for some values of θ.
- Functions $f(r, \theta)$, with polar inputs, are technically only well defined when $r \geq 0 .^{1}$

Let's look at the boundary of the region given by this example. Thee inner loop of the function $1+2 \sin (\theta)$ is drawn out when θ goes from $7 \pi / 6$ to $11 \pi / 6$. However, on this region the function $2 \sin (\theta)+1$ is negative. Because the bounds of integration for a polar function should only include positive r values, it would be incorrect to set up this integral as

$$
\int_{\theta=7 \pi / 7}^{\theta=11 \pi / 6} \int_{0}^{r=1+2 \sin (\theta)} f(r, \theta) r d r d \theta /
$$

To correctly write down this polar integral, we need to express the boundary for r by a polar function $r(\theta)$ which is always greater than or equal to zero. One can check that

$$
2 \sin (\theta)-1
$$

also graphs out the same curve. However, for the function $2 \sin (\theta)-1$, the inner region is graphed when θ goes from $\pi / 6$ to $5 \pi / 6$, and r is graphed positively over this region. So the correct way to integrate over this region is by the polar integral:

$$
\int_{\theta=\pi / 6}^{\theta=5 \pi / 6} \int_{0}^{r=2 \sin (\theta)-1} f(r, \theta) r d r d \theta
$$

How to generally do this? In general, let $r(\theta)$ be a bound for integration, and let's suppose that it is negative on $\theta \in[a, b]$. Then we want to replace it with a function which draws out the same boundary, but is instead defined over the region $\theta \in[-b,-a]$ and takes on positive values. A new candidate function is

$$
r_{n e w}(\theta+\pi)=-r(\theta)
$$

For instance, if $r=1+2 \sin (\theta)$, one can check that

$$
-r(\theta)=-(1+2 \sin (\theta))=-1-2 \sin (\theta)=2 \sin (\theta+\pi)-1=r_{n e w}(\theta+\pi)
$$

where $r_{\text {new }}(\theta)=2 \sin (\theta)-1$.
Concept Check. See if you can set up the integral for the area between the two loops.

[^0]
[^0]: ${ }^{1}$ You can remove this technical assumption if it is that case that $f(r, \theta)=f(-r,-\theta)$, but this is not going to necessarily be the case with some function.

