Lagrange Multipliers

0.1. Lagrange Multipliers. Find the points on the curve $x y=1$ where the function $x+y$ is (locally) maximized and minimized.
Solution:Lagrange's equations ask us to solve where $f(x, y)=x+y$ has gradient in the same direction as $g(x, y)=x y=1$. We compute

$$
\begin{aligned}
& \nabla g=\langle y, x\rangle \\
& \nabla f=\langle 1,1\rangle
\end{aligned}
$$

Then Lagrange's equations give us the following three equalities:

$$
\begin{aligned}
\lambda y & =1 \\
\lambda x & =1 \\
x y & =1
\end{aligned}
$$

From the first two equations we get that $1 / \lambda=x=y$, which plugs into the third equation as

$$
x \cdot x=1
$$

Which tells us that $x= \pm 1$. Using this solution for x to get y and λ again, we have 2 solutions, where

$$
x=1, y=1, \lambda=1
$$

or

$$
x=-1, y=-1, \lambda=-1
$$

Checking the equation show thathere is a maximum at 1,1 , where $f(1,1)=$,2 , and a minimum where $f(-1,-1)=-2$.
0.2. Lagrange Multipliers. Show that the point on the unit sphere which is closest to the point (a, b, c) is

$$
\left(\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}, \frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}, \frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}\right)
$$

Solution:Minimizing the distance is the same a minimizing the distance squared. So, we are trying to minimuze the function

$$
f(x, y, z)=(x-a)^{2}+(y-b)^{2}+(z-c)^{2}
$$

on the constraint

$$
g(x, y, z)=x^{2}+y^{2}+z^{2}=1
$$

We compute

$$
\begin{aligned}
\nabla g & =\langle 2 x, 2 y, 2 z\rangle \\
\nabla f & =\langle 2(x-a), 2(y-b), 2(z-c)\rangle
\end{aligned}
$$

Then Lagrange's equations give us the following three equalities:

$$
\begin{aligned}
\lambda 2 x=2(x-a) \\
\lambda 2 y=2(y-b) \\
\lambda 2 z=2(z-c) \\
x^{2}+y^{2}+z^{2}=1
\end{aligned}
$$

This shows $x=a /(1-\lambda), y=b /(1-\lambda), z=c /(1-\lambda)$, so by the third equation

$$
a^{2}+b^{2}+c^{2}=(1-\lambda)^{2}
$$

giving us

$$
\lambda=1 \pm \sqrt{a^{2}+b^{2}+c^{2}}
$$

telling us that (x, y, z) is

$$
\pm\left(\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}, \frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}, \frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}\right)
$$

0.3. Lagrange Multipliers. Use the method of Lagrange Multipliers to find the point on the sphere which is closest to the plane

$$
a x+b y+c z+d=0
$$

(Be sure to check where the gradient is zero, what does this mean?) Solution:Minimizing the distance is the same a minimizing the distance squared. So, we are trying to minimuze the function

$$
f(x, y, z)=\frac{(a x+b y+c z+d)^{2}}{a^{2}+b^{2}+c^{2}}
$$

on the constraint

$$
g(x, y, z)=x^{2}+y^{2}+z^{2}=1
$$

We compute

$$
\begin{aligned}
\nabla g & =\langle 2 x, 2 y, 2 z\rangle \\
\nabla f & =2(a x+b x+c z+d)\langle 2 a, 2 b, 2 c\rangle
\end{aligned}
$$

Then Lagrange's equations give us the following three equalities:

$$
\begin{aligned}
& \lambda 2 x=2(a x+b x+c z+d) a \\
& \lambda 2 y=2(a x+b x+c z+d) b \\
& \lambda 2 z=2(a x+b x+c z+d) b \\
& x^{2}+y^{2}+z^{2}=1
\end{aligned}
$$

One can check that either $a x+b x+c z+d=0$ and $x^{2}+y^{2}+z^{2}=1$, which means that there are points in the intersection of the plane an the sphere, or (x, y, z) is

$$
\pm\left(\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}, \frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}, \frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}\right)
$$

