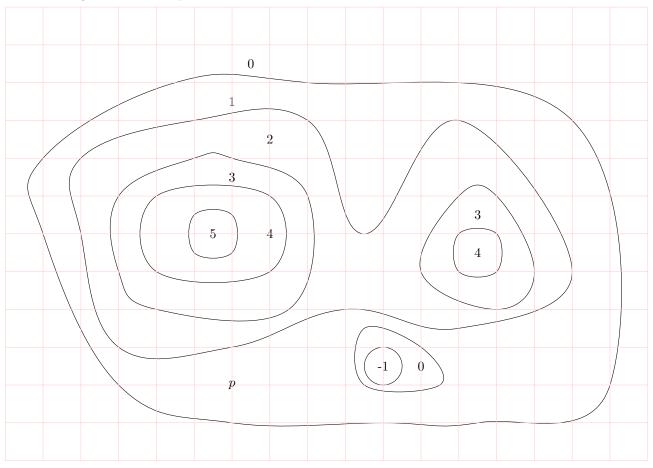
Quiz, Feb 29

NAME:


0.1. Tangent Plane. Suppose that $\nabla f(2,3) = \langle 3,4 \rangle$ and that f(2,3) = 2. Find the equation to the plane tangent to the graph of f going which contains the point (2,3,2).

0.2. Minimizing a function. Find the point on the upper hemisphere

$$f(x,y) = \sqrt{1 - x^2 - y^2}$$

which is closest to the point (2, 3, 6).

0.3. Reading Contour Graphs.

Mark the Local Maximas, Local Minimas, and Saddle points on this contour plot. Then estimate directional directives at p

- In the $\langle 1,0\rangle$ direction?
- In the $\langle 0,1 \rangle$ direction?
- In the $\langle 0, -1 \rangle$ direction?
- In the $\langle 3/\sqrt{1}3, 2/\sqrt{1}3 \rangle$ direction?

Bonus Problem. Worth no points! There are two roads from Evans to Wheeler, and two people are able to walk from Evans to Wheeler along the two routes while holding a 50 foot long rope. Prove that if one person goes from A to B along one route, and the other from B to A along the other route, then at some point they are at most 50 feet away from one another.