Quiz, Feb 29
Name:
0.1. Tangent Plane. Suppose that $\nabla f(2,3)=\langle 3,4\rangle$ and that $f(2,3)=2$. Find the equation to the plane tangent to the graph of f going which contains the point $(2,3,2)$.
0.2. Minimizing a function. Find the point on the upper hemisphere

$$
f(x, y)=\sqrt{1-x^{2}-y^{2}}
$$

which is closest to the point $(2,3,6)$.

0.3. Reading Contour Graphs.

Mark the Local Maximas, Local Minimas, and Saddle points on this contour plot. Then estimate directional directives at p

- In the $\langle 1,0\rangle$ direction?
- In the $\langle 0,1\rangle$ direction?
- In the $\langle 0,-1\rangle$ direction?
- In the $\langle 3 / \sqrt{1} 3,2 / \sqrt{1} 3\rangle$ direction?

Bonus Problem. Worth no points! There are two roads from Evans to Wheeler, and two people are able to walk from Evans to Wheeler along the two routes while holding a 50 foot long rope. Prove that if one person goes from A to B along one route, and the other from B to A along the other route, then at some point they are at most 50 feet away from one another.

