Practice Midterm, Feb 29

NAME:

0.1. The line $A B$ is given by $\vec{a}(t)=\langle 2 t+1,3 t+1,2\rangle$ and the line $C D$ is given by $\vec{b}(s)=\langle s, s, s\rangle$.
(a) Find a line ℓ which intersects both the line $A B$ and the line $C D$ at right angles.

Solution: We can find the direction of this line by taking the cross productfo the directions that the other two lines travel in. The first line travels in the direction
and the second line travels in the direction

This means that the direction that I line which is perpendicular to both of these must travel in the direction

$$
\langle 2,3,0\rangle \times\langle 1,1,1\rangle
$$

This cross product is $\langle 3,-2,-1\rangle$.
Then to find the line which intersects both of these, and travels in the same direction, we need check wher e

$$
\langle 2 t+1,3 t+1,2\rangle+q\langle 3,-2,-1\rangle=\rangle s, s, s\langle
$$

for some t, q, s. Writing these as a system of equations

$$
\begin{aligned}
2 t+3 q-s+1 & =0 \\
3 t-2 q-s+1 & =0 \\
0 t-q-s+2 & =0
\end{aligned}
$$

Solving this system of equations gives $t=5 / 14$, which tells us an initial point. Our equation for a line is

$$
\ell(t)=\vec{a}(5 / 14)+q \vec{v}
$$

or

$$
\langle 24 / 14+3 q, 29 / 14-2 q, 2-q
$$

(b) Find a function $D(s, t)$ which computes the distance between $\vec{a}(t)$ and $\vec{b}(s)$. Minimize this function to find the smallest distance between the lines $A B$ and $C D$.
Solution:The function that computes the distance between these two curves is

$$
\sqrt{(2 t+1-s)^{2}+(3 t+1-s)^{2}+(2-s)^{2}}
$$

And minimizing this function is the same as minimizing the function squared. So we are looking to minimize

$$
f(t, s)(2 t+1-s)^{2}+(3 t+1-s)^{2}+(2-s)^{2}
$$

Taking the derivative with respect to t, we get

$$
f_{t}(t, s)=4(2 t+1-s)+6(3 t+1-s)=10-10 s+26 t
$$

and takind the derivative with respect to s we get

$$
f_{s}(t, s)=-2(2 t+1-s)-2(3 t+1-s)-2(2-s)=-8+6 s-10 t
$$

Setting both of these equal to zero, and solving for s and t we get

$$
t=5 / 14, s=27 / 14
$$

which is the same intercept as in the previous problem.
(c) Confirm that the line ℓ minimizes the distance between $A B$ and $C D$.
0.2. Draw a contour plot for a function which has exactly 4 critical points- 1 saddle, 2 maximums and 1 minimum. Solution:

0.3. The upper hemisphere is given by the function $f(x, y)=\sqrt{1-x^{2}-y^{2}}$. Using the gradient, compute the tangent plane to this graph at the point $\left(a, b, \sqrt{1-a^{2}-b^{2}}\right)$.
Solution: We compute the gradient of $f(x, y)$ to be

$$
\nabla f(x, y):=\left\langle\frac{-x}{\sqrt{1-x^{2}-y^{2}}}, \frac{-y}{\sqrt{1-x^{2}-y^{2}}}\right\rangle
$$

The equation for the tangent plane using the gradient is

$$
\left(z-z_{0}\right)=\nabla f \cdot\left\langle x-x_{0}, y-y_{0}\right\rangle
$$

so, we get that the equation for the tangent plane is

$$
z-\sqrt{1-a^{2}-b^{2}}=(x-a) \frac{-a}{\sqrt{1-a^{2}-b^{2}}}+(y-b) \frac{-b}{\sqrt{1-a^{2}-b^{2}}}
$$

If you want to simplify by multiplyfing by the root, we get

$$
z \sqrt{1-a^{2}-b^{2}}-1=-a(x-a)-b(x-b)
$$

Simplifying further gives

$$
a(x-a)+b(x-b)+z \sqrt{1-a^{2}-b^{2}}=1
$$

Notice that the normal vector to the tangent plane at a point on the sphere is $\left\langle a, b, \sqrt{1-a^{2}-b^{2}}\right\rangle$, which is the point which the plane is tangent to.
0.4. Let $f(x, y)=x^{2}+y^{2}$. Suppose that we know that $\vec{r}(t)=\langle x(t), y(t)\rangle$ has

$$
\begin{aligned}
|\vec{r}(0)| & =0 \\
\left|\overrightarrow{r^{\prime}}(0)\right| & =1 \\
\left|\overrightarrow{r^{\prime \prime}}(0)\right| & =0
\end{aligned}
$$

Compute

$$
\begin{gathered}
\frac{d^{2}}{d t^{2}} f(x(t), y(t)) \\
\frac{d^{2}}{d t^{2}} f(x(t), y(t))=\frac{d}{d t}\left(\left.f_{x}\right|_{(x(t), y(t))} x^{\prime}(t)+\left.f_{y}\right|_{(x(t), y(t))} y^{\prime}(t)\right)
\end{gathered}
$$

You have two choices here. We could either continue computing the chain rule abstractly, or substitute what we know for f_{x} and f_{y}. Let's first try substitution. Notice that $f_{x}=2 x$ and $f_{y}=2 y$.

$$
=\frac{d}{d t}\left(2 x(t) x^{\prime}(t)+2 y(t) y^{\prime}(t)\right)
$$

Using the Product Rule

$$
=2 x^{\prime}(t) x^{\prime}(t)+2 x(t) x^{\prime \prime}(t)+2 y^{\prime}(t) y^{\prime}(t)+2 y(t) y^{\prime \prime}(t)
$$

We know from assumption that $x^{\prime \prime}(0)=y^{\prime \prime}(0)=0$.

$$
\begin{aligned}
& =2 x^{\prime}(t) x^{\prime}(t)+2 y^{\prime}(t) y^{\prime}(t) \\
& =2\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle \cdot\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle \\
& =2\left|r^{\prime}(t)\right|^{2} \\
& =2(1)^{2}=2
\end{aligned}
$$

The other option would have been to continue using the chain rule. You would have gotten from the product rule:

$$
=\frac{d f_{x}}{d t} x^{\prime}(t)+f_{x} x^{\prime \prime}(t)+\frac{d f_{y}}{d t} y^{\prime}(t)+f_{y} y^{\prime \prime}(t)
$$

Notice that $y^{\prime \prime}(0)=x^{\prime \prime}(0)=0$.

$$
=\frac{d f_{x}}{d t} x^{\prime}(t)+\frac{d f_{y}}{d t} y^{\prime}(t)
$$

Applying the Chain Rule Again;

$$
=f_{x x} x^{\prime}(t) x^{\prime}(t)+2 f_{x y} x^{\prime}(t) y^{\prime}(t)+f_{x y} x^{\prime}(t) y^{\prime}(t)+f y y y^{\prime}(t) y^{\prime}(t)
$$

We know that $f_{x x}(0,0)=f_{y y}(0,0)=2$ and $f_{x y}(0,0)=0$

$$
\begin{aligned}
& =2\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle \cdot\left\langle x^{\prime}(t), y^{\prime}(t)\right\rangle \\
& =2\left|r^{\prime}(t)\right|^{2} \\
& =2(1)^{2}=2
\end{aligned}
$$

which should always be 1 .
0.5. Estimate the Gradient at each of the points. Each grid length is 1 unit.

Solution:

(a) This one is the trickiest. It looks like ∇f is in the direction of $\langle-3,2\rangle$, based on the fact that the gradient must be perpendicular to the normal curve. The length of ∇f is given by the

$$
|\nabla f|=\frac{1}{\text { The directional derivative of } f \text { in the direction of } \nabla f}
$$

Condsider a vector starting at a, then travelling perpendicularly to the next level curve. This vector has a length (or a "run") of about 1, and a "rise" of about 1 . Therefore, we estimate

$$
\begin{gathered}
D_{\nabla f /|\nabla f|}(a) \sim 1 \\
3
\end{gathered}
$$

which means that $|\nabla f| \sim 1$. We then have that $\nabla f \sim\langle-3 / \sqrt{13}, 2 / \sqrt{13}\rangle$
(b) This is a critical point, so the gradient is $\langle 0,0\rangle$.
(c) This will have gradient only in the x direction, $\langle 1,0\rangle$.
0.6. A. n ant travels in $x-y$ coordinates along the path $\left(3 t, t^{2}\right)$ from time 0 to 2 . It walks along the hill $f(x, y)=2-x^{2}-y$ during this time.

- How long is the path that the ant travels along the hill, and what is its maximal speed?
- When (if ever) does the ant travel perpendicular to the gradient of the hill?

Solution:The ant travels along the path (with the hill)

$$
\left\langle 3 t, t^{2}, 2-(3 t)^{2}-t^{2}\right\rangle=\left\langle 3 t, t^{2}, 2\left(1-5 t^{2}\right)\right\rangle
$$

The velocity of the ant is $\vec{v}(t)=\langle 3,2 t, 20 t\rangle$ The length of this vector is $\mid \vec{v}(t)=\sqrt{3^{2}+404 t^{2}}$ and the length of the curve is

$$
\int_{0}^{2} \sqrt{3^{2}+404 t^{2}} d t
$$

The maximal velocity is when this function has a maximum on the interval, which is at time 2 . For the second part, notice that

$$
\frac{d}{d t}\left(f(x(t), y(t))=f_{x} x^{\prime}+f_{y} y^{\prime}=\nabla f \cdot\left\langle x^{\prime}, y^{\prime}\right\rangle\right.
$$

so we are checking when $\langle-2 x(t),-1\rangle \cdot\langle 3,2 t\rangle=\langle-6 t,-1\rangle \cdot\langle 3,2 t\rangle=0$.
This occurs when $t=0$.

