Practice Midterm, Feb 29

NAME:

0.1. The line $A B$ is given by $\vec{a}(t)=\langle 2 t+1,3 t+1,2\rangle$ and the line $C D$ is given by $\vec{b}(s)=\langle s, s, s\rangle$.
(a) Find a line ℓ which intersects both the line $A B$ and the line $C D$ at right angles.
(b) Find a function $D(s, t)$ which computes the distance between $\vec{a}(t)$ and $\vec{b}(s)$. Minimize this function to find the smallest distance between the lines $A B$ and $C D$.
(c) Confirm that the line ℓ minimizes the distance between $A B$ and $C D$.
0.2. Draw a contour plot for a function which has exactly 4 critical points- 1 saddle, 2 maximums and 1 minimum.
0.3. The upper hemisphere is given by the function $f(x, y)=\sqrt{1-x^{2}-y^{2}}$. Using the gradient, compute the tangent plane to this graph at the point $\left(a, b, \sqrt{1-a^{2}-b^{2}}\right)$.
0.4. Let $f(x, y)=x^{2}+y^{2}$. Suppose that we know that $\vec{r}(t)=\langle x(t), y(t)\rangle$ has $\vec{r}(0)=0$. Suppose we additionally know that

$$
\left.\frac{d}{d t} f(x(t), y(t))\right|_{t=0}=6
$$

Compute $\left|\overrightarrow{v^{\prime}}(0)\right|$.
0.5. Estimate the Gradient at each of the points. Each grid length is 1 unit.

0.6. A. n ant travels in $x-y$ coordinates along the path $\left(3 t, t^{2}\right)$ from time 0 to 2 . It walks along the hill $f(x, y)=2-x^{2}-y$ during this time.

- How long is the path that the ant travels along, and what is its maximal speed?
- When (if ever) does the ant travel perpendicular to the gradient of the hill?

