Discussion Notes

We've been messing around with the definition of differentiable for a while now, because it's a pretty hard concept to define. It'll take some set up to make a definition.

Let $p=\left(x_{0}, y_{0}\right)$ be a point, $f(x, y)$ be a function, and $\vec{v}=\left\langle v_{x}, v_{y}\right\rangle$ be a vector. Define the derivative of f by \vec{v} at p to be

$$
\left(D_{p} f\right)(\vec{v}):=\frac{d}{d t} f(p+t \vec{v})
$$

where $p+t \vec{v}=\left(x_{0}+v_{x} t, y_{0}+v_{y} t\right)$. Notice that if \vec{v} is a unit vector, then this is the directional derivative of f in the direction of v. Otherwise, this is the derivative of f as applied to the path $p+t \vec{v}$.
Notice that $\left(D_{p} f\right)$ is a function of \vec{v}. (Recall, a function is nothing more than a rule that prescribes to every input an output; in this case, the input if \vec{v} and the output is $\frac{d}{d t} f(p+t \vec{v})$. We could write this as

$$
D_{p} f: \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

where \mathbb{R}^{2} is the vector space which contains \vec{v}.
Definition: If $D_{p} f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a linear map, then f is called a differentiable function.
One easy way to see that differentiability defines this condition is that we can define this as

$$
\begin{aligned}
D_{p} f: \mathbb{R}^{2} & \rightarrow \mathbb{R} \\
\vec{v} & \mapsto \nabla f \cdot \vec{v}
\end{aligned}
$$

and the dot product is a linear map.

