DISCUSSION NOTES

We've been messing around with the definition of differentiable for a while now, because it's a pretty hard concept to define. It'll take some set up to make a definition.

Let $p = (x_0, y_0)$ be a point, f(x, y) be a function, and $\vec{v} = \langle v_x, v_y \rangle$ be a vector. Define the derivative of f by \vec{v} at p to be

$$(D_p f)(\vec{v}) := \frac{d}{dt} f(p + t\vec{v})$$

where $p + t\vec{v} = (x_0 + v_x t, y_0 + v_y t)$. Notice that if \vec{v} is a unit vector, then this is the directional derivative of f in the direction of v. Otherwise, this is the derivative of f as applied to the path $p + t\vec{v}$. Notice that $(D_p f)$ is a *function of* \vec{v} . (Recall, a function is nothing more than a rule that prescribes to every input an output; in this case, the input if \vec{v} and the output is $\frac{d}{dt}f(p+t\vec{v})$. We could write this as

$$D_p f : \mathbb{R}^2 \to \mathbb{R}$$

where \mathbb{R}^2 is the vector space which contains \vec{v} .

Definition: If $D_p f : \mathbb{R}^2 \to \mathbb{R}$ is a *linear map*, then f is called a *differentiable* function.

One easy way to see that differentiability defines this condition is that we can define this as

$$D_p f : \mathbb{R}^2 \to \mathbb{R}$$
$$\vec{v} \mapsto \nabla f \cdot \vec{v}$$

and the dot product is a linear map.