Discussion Problems, Gradients and Directional Derivatives

0.1. Gradient Calculation. Jack and Jill walk up the hill $f(x, y)$, to fetch a pail of water. The path Jack takes is

$$
r(t)=(3 t, 2 t)
$$

and the path that Jill takes is

$$
s(t)=(-2 t, 3 t)
$$

Jack reports that at time 0 ,

$$
\left.\frac{d}{d t}(f(3 t, 2 t))\right|_{t=0}=1
$$

and Jill reports that

$$
\left.\frac{d}{d t}(f(-2 t, 3 t))\right|_{t=0}=2
$$

- What is the gradient $\nabla f(0,0)$.
- Suppose additionally that $f(0,0)=2$. What is the tangent plane to the graph of f at $(0,0,2)$?

Solution:From the chain rule (or definition of directional derivative) we have

$$
\begin{aligned}
1 & =\left.\frac{d}{d t} \frac{d}{d t}(f(3 t, 2 t))\right|_{t=0} \\
& =\left.\left.\frac{\partial f}{\partial x}\right|_{(0,0)} \frac{d(3 t)}{d t}\right|_{t=0}+\left.\left.\frac{\partial f}{\partial y}\right|_{(0,0)} \frac{d(2 t)}{d t}\right|_{t=0} \\
& =\left.3 \frac{\partial f}{\partial x}\right|_{(0,0)}+\left.2 \frac{\partial f}{\partial y}\right|_{(0,0)}
\end{aligned}
$$

Similarly, Jill's path tells us that

$$
2=-\left.2 \frac{\partial f}{\partial x}\right|_{(0,0)}+\left.3 \frac{\partial f}{\partial y}\right|_{(0,0)}
$$

This gives us a system of equations for the partial derivatives at $(0,0)$.

$$
\begin{aligned}
& 2=-\left.2 \frac{\partial f}{\partial x}\right|_{(0,0)}+\left.3 \frac{\partial f}{\partial y}\right|_{(0,0)} \\
& 1=\left.3 \frac{\partial f}{\partial x}\right|_{(0,0)}+\left.2 \frac{\partial f}{\partial y}\right|_{(0,0)}
\end{aligned}
$$

Solvig this system of linear equations gives that $\left.\frac{\partial f}{\partial x}\right|_{(0,0)}=-1 / 13$ and $\left.\frac{\partial f}{\partial y}\right|_{(0,0)}=8 / 13$. From here, we know that the gradient it

$$
\nabla f(0,0)=\langle-1 / 13,8 / 13\rangle
$$

and the formula for the tangent plane, $\left(z-z_{0}\right)=\frac{\partial f}{\partial x}\left(x-x_{0}\right)+\frac{\partial f}{\partial y}\left(y-y_{0}\right)$ gives that the tangent plane is

$$
z=-x / 13+8 y / 13+2
$$

0.2. Directional Derivatives of the Monkey Saddle. The pointy Monkey saddle is given by the function

$$
f(x, y)=\frac{y^{3}-3 x^{2} y}{x^{2}+y^{2}}
$$

In polar coordinates, this is given by $r \cos (3 \theta)$.

- Let $\vec{v}=\langle\cos \theta, \sin \theta\rangle$. Compute the directional derivative

$$
\left.D_{\vec{v}} f\right|_{(0,0)} .
$$

Hint: What should the directional derivatives at the origin of a function in polar form be?

- Using the above, compute the Gradient of $f(x, y)$ at the origin.
- Show that it is not the case that $D_{\vec{v}}=\nabla f \cdot \vec{v}$.
- What went wrong?

Solution:Using the hint, notice that the directional derivative in the direction of $\vec{v}=\langle\cos \theta, \sin \theta\rangle$ of a function $f(r, \theta)$ at the origin (and it is important here that we are at the origin!) is simply given by $\left.\frac{\partial f}{\partial r}\right|_{(r=0, \theta)}$ This means that

$$
D_{\vec{v}} f=\cos (3 \theta)
$$

Now, the gradient at the origin is given by $\left\langle\partial_{x} f, \partial_{y} f\right.$. The derivative in the x direction can be found by

$$
\left.\frac{d}{d t} f(t, 0)\right|_{t=0}=\frac{d}{d t}(0)=0
$$

Similarly, $\partial_{y} f(0,0)=1$.
So the Gradient is $\langle 0,1\rangle$.

