Discussion Problems, Gradients and Directional Derivatives

0.1. Gradient Calculation. Jack and Jill walk up the hill $f(x, y)$, to fetch a pail of water. The path Jack takes is

$$
r(t)=(3 t, 2 t)
$$

and the path that Jill takes is

$$
s(t)=(-2 t, 3 t)
$$

Jack reports that at time 0 ,

$$
\left.\frac{d}{d t}(f(3 t, 2 t))\right|_{t=0}=1
$$

and Jill reports that

$$
\left.\frac{d}{d t}(f(-2 t, 3 t))\right|_{t=0}=2
$$

- What is the gradient $\nabla f(0,0)$.
- Suppose additionally that $f(0,0)=2$. What is the tangent plane to the graph of f at $(0,0,2)$?
0.2. Directional Derivatives of the Monkey Saddle. The pointy Monkey saddle is given by the function

$$
f(x, y)=\frac{y^{3}-3 x^{2} y}{x^{2}+y^{2}}
$$

In polar coordinates, this is given by $r \cos (3 \theta)$.

- Let $\vec{v}=\langle\cos \theta, \sin \theta\rangle$. Compute the directional derivative

$$
\left.D_{\vec{v}} f\right|_{(0,0)}
$$

Hint: What should the directional derivatives at the origin of a function in polar form be?

- Using the above, compute the Gradient of $f(x, y)$ at the origin.
- Show that it is not the case that $D_{\vec{v}}=\nabla f \cdot \vec{v}$.
- What went wrong?

