1. Derivatives of Multi-variable functions, I

1.1. Partial Derivatives+ Linear Approximation. Compute the partial derivatives of $x^{2}-y^{2}$ at the point $(1,1)$. Use these derivatives to estimate the value of the function at the value $(1.5,1.5)$.
Solution:We have

$$
\begin{array}{r}
\partial_{x} f(x, y)=2 x \\
\partial_{y} f(x, y)=-2 y
\end{array}
$$

The approximation is

$$
\begin{aligned}
f(1+.5,1+.5) & \simeq f(1,1)+.5\left(\partial_{x} f\right)\left((1,1)+.5\left(\partial_{y} f(1,1)\right.\right. \\
& =0+.5(2)+.5(-2) \\
& =0
\end{aligned}
$$

This is actually the value of $f(1.5,1.5)$, so the approximation is not so bad.
1.2. Partial Derivatives + Linear Approximation II. Consider the function $\frac{x y}{\sqrt{x^{2}+y^{2}}}$. Compute the partial derivatives in both the x and y directions at 0 . Estimate the value of the function at the point $(1,1)$. Why is this such a bad estimate? (You may want to draw a contour plot to help understand why this estimate is so bad?
Solution:Notice that we can take

$$
\partial_{x}(f)(0,0)=\left.\frac{d}{d t}(f(t, 0))\right|_{t=0}
$$

So, $\partial_{x}(f)(0,0)=0$. Similarly, $\partial_{y}(f)(0,0)=0$. From the example in class, we know that $f(x, y)$ is continuous at the origin, and so $f(0,0)=0$. Therefore, our approximation would say that $f(1,1)=0$. However, $f(1,1)=\frac{1}{\sqrt{2}}$.
The reason this approximation is so bad is because derivatives of this function at 0 only exist in the x and y direction. Notice, for instance, along the $x=y$ line parameterized by $\langle t, t\rangle$,

$$
f(t, t)=t^{2} / \sqrt{2 t^{2}}=|t| / \sqrt{2}
$$

This isn't even differentiable at $t=0$. So along the $x=y$ line, there is no derivative. Therefore, it is not reasonable to hope that the function can be approximated in the $x=y$ direction by derivatives in the x and y direction.
1.3. Limits. Show that these functions have limit values defined at the origin, or do not have a limit at the origin.

$$
\frac{x+y}{x^{2}+y^{2}} \quad \frac{x+y}{\sqrt{x^{2}+y^{2}}} \quad \frac{\sin x+\sin y}{x+y}
$$

Solution:The first one is not continuous at the origin. Take $y=0$. Then this is $x / x^{2}=1 / x$ which is very not continuous at the origin.
The second one is not continuous at the origin. Notice that if we approach along $x=-y$, we get 0 , and if we approach along $x=y$, we get ± 1 (depending if we approach from the first quadrent or the 3 rd quadrant.)

