Groupwork I: Exploring the Monkey Saddle

My favorite function of two variables is called the monkey saddle. It is given by the following function:

$$
f(x, y)=x\left(x^{2}-3 y^{2}\right)
$$

Solution:You should get the plane split into 6 equal size regions. The regions alternate positive and negative, starting with the region that contains the positive x axis. Find the $f(x, y)=0$. From this information, start to make a contour plot: Which areas of the contour are bigger than 0 ? Which areas of the contour are smaller? Once you have finished this, consult with your teammates on why this surface is called the Monkey Saddle.

Groupwork II: Exploring the Monkey Saddle

My favorite function of two variables is called the monkey saddle. It is given by the following function:

$$
f(x, y)=x\left(x^{2}-3 y^{2}\right)
$$

Find the intersection of the surface given by this graph with the $x z$ plane.
Solution: The graph is of the cubic $z=x^{3}$. Once you have finished this, consult with your teammates on why this surface is called the Monkey Saddle.

Groupwork III: Exploring the Monkey Saddle

My favorite function of two variables is called the monkey saddle. It is given by the following function:

$$
f(x, y)=x\left(x^{2}-3 y^{2}\right)
$$

Show that this has 3 -way symmetry about the origin. Show that if $x=r \cos \theta$ and $y=r \sin \theta$, then $f(x, y)=r^{3} \cos (3 \theta)$. Conclude that the Monkey Saddle graph has 3 fold symmetry around the origin by rotation.
Solution:Using the triple angle formula, we get that $r^{3} \cos (3 \theta)=r^{3} \cos ^{3} \theta+3 r^{3} \sin ^{2} \theta \cos \theta$. This shows the equality given in the hint. Notice that $r^{3} \cos (3 \theta)=r^{3} \cos (\theta+2 \pi n / 3)$, which tells us that graph is symmetric under rotation by 120 degrees.
Once you have finished this, consult with your teammates on why this surface is called the Monkey Saddle.

