(1) Find the acceleration at time 3 of the vector valued function
\[\mathbf{r}(t) = \langle 1 + \sin t, \sin t, 1 \rangle \]

Solution: Taking the second derivative gives
\[\mathbf{r}''(t) = \langle 1 - \sin t, -\sin t, 0 \rangle \]
so the acceleration vector at time 3 is
\[\mathbf{r}''(3) = \langle 1 - \sin 3t, -\sin 3t, 0 \rangle \]

(2) Find the velocity vectors and positions where these two vector valued functions intersect:
\[\mathbf{r}(t) = \langle 1 + t, t^2 + 2, t^2 + 1 \rangle \]
\[\mathbf{s}(t) = \langle 3 + t, t^2 + 2, t + 4 \rangle \]

Solution: The point of intersection is where there are different values \(t_0 \) and \(t_1 \) such that
\[\mathbf{r}(t_0) = \mathbf{s}(t_1) \]
Checking the first coordinate, we have that \(1 + t_0 = 3 + t_1 \), so we know that \(t_0 = 2 + t_1 \). Taking the second coordinate, we have \(t_0 + 2 = t_1^2 + 2 \), so \(2 + t_1 + 2 = t_1^2 + 2 \), which tells us that \(t_1^2 - t_1 - 2 = 0 \), so that \(t_1 = -1 \) or \(t_1 = 2 \). On the last equation, we see that only \(t_1 = -1 \) is a valid solution. So we know that
\[\mathbf{r}(1) = \mathbf{s}(-1) \]
Checking the derivatives at this point, we have
\[\mathbf{r}'(t) = \langle 1, 24t \rangle \]
\[\mathbf{s}'(t) = \langle 1, 2t, 1 \rangle \]
so that at these two times, their velocity vectors are \(\mathbf{r}'(1) = \langle 1, 24 \rangle \) and \(\mathbf{s}' = \langle 1, -2, 1 \rangle \) respectively.

(3) Find the plane which contains both the velocity vector to \(\mathbf{r}(t) \) and the velocity vector to \(\mathbf{s}(t) \) at their point of intersection.

Solution: We know two vectors in the plane, so the normal to the plane will be given by their cross product. Their cross product is
\[\mathbf{N}_p = \mathbf{r}'(1) \times \mathbf{s}'(-1) = (10, 3, -3) \]
Plugging a point into the equation of a plane that we know, \(\mathbf{r}(1) = (2, 3, 5) \)
\[10x + 3y - 3z = d \]
we get that \(d = 2 \cdot 10 + 3 \cdot 3 - 3 \cdot 5 = 14 \).

(4) Show that the function
\[\mathbf{r}(t) = \langle 1 + t^2, 1 + t^2, t \rangle \]
does not intersect the plane
\[-2x + 3y + z = 1. \]
Then find the closest point of the vector valued function to the plane by two methods:
- Finding where the velocity of \(\mathbf{r}(t) \) is parallel to the plane
- Taking the distance function between a point and the plane, and minimizing it.
Are these two always going to be the same?

Solution: To show that they do not intersect, plug the formula of the curve into the formula for the plane component wise. Since \(-2(1 + t^2) + 3(1 + t^2) + 1(1 + t) \) is always greater than 1, so the plane cannot intersect the curve.
The velocity vector of the curve is given by \(\mathbf{r}'(t) = (2t, 2t, 0) \). We want to see when this is parallel to the plane. This occurs when this velocity vector is perpendicular to the normal vector of the plane. So, we solve for \(t \) such that
\[\mathbf{r}'(t) \cdot \mathbf{N}_p = 0 \]
Substituting, we get

\[\langle 2t, 2t, 1 \rangle \cdot \langle -2, 3, 1 \rangle = 0 \]

Solving for this, we see that \(t = -1/2 \).

For the second part, we can use the “plane point distance formula”

\[D = \frac{|ax_0 + by_0 + cz_0 + d|}{\sqrt{a^2 + b^2 + c^2}} \]

and substitute our curve in for the values \(\langle x_0, y_0, z_0 \rangle \). From this we get

\[D(t) = \frac{|-2(1 + t^2) + 3(1 + t^2) + 1(1 + t) - 1|}{\sqrt{(-2)^2 + 3^2 + 1^2}} = \frac{t^2 + t + 1}{\sqrt{14}} \]

Removing the absolute value signs, and taking the derivative, we need to find the value of \(t \) making \(2t + 1 = 0 \), which is when \(t = -\frac{1}{2} \).