Discussion Problems, Vector Valued Functions I

(1) Find the acceleration at time 3 of the vector valued function

$$
\vec{r}(t)=\langle 1+\sin t, \sin t, 1\rangle
$$

Solution:Taking the second derivative gives

$$
\vec{r}^{\prime \prime}(t)=\langle 1-\sin t,-\sin t, 0\rangle
$$

so the accelration vector at time 3 is

$$
\vec{r}^{\prime \prime}(3)=\langle 1-\sin 3 t,-\sin 3 t, 0\rangle
$$

(2) Find the velocity vectors and positions where these two vector valued functions intersect:

$$
\begin{aligned}
\vec{r}(t) & =\left\langle 1+t, t+2,2 t^{2}+1\right\rangle \\
\vec{s}(t) & =\left\langle 3+t, t^{2}+2, t+4\right\rangle
\end{aligned}
$$

Solution:The point of intersection is where there are different values t_{0} and t_{1} such that

$$
\vec{r}\left(t_{0}\right)=\vec{s}\left(t_{1}\right)
$$

Checking the first coordinate, we have that $1+t_{0}=3+t_{1}$, so we know that $t_{0}=2+t_{1}$. Taking the second coordinate, we have $t_{0}+2=t_{1}^{2}+2$, so $2+t_{1}+2=t_{1}^{2}+2$, which tells us that $t_{1}^{2}-t_{1}-2=0$, so that $t_{1}=-1$ or $t_{1}=2$. On the last equation, we see that only $t_{1}=-1$ is a valid solution. So we know that

$$
\vec{r}(1)=\vec{s}(-1) .
$$

Checking the derivatives at this point, we have

$$
\begin{aligned}
& \vec{r}^{\prime}(t)=\langle 1,24 t\rangle \\
& \vec{s}^{\prime}(t)=\langle 1,2 t, 1\rangle
\end{aligned}
$$

so that at these two times, there velocity vectors are $\vec{r}^{\prime}(1)=\langle 1,2,4\rangle$ and $\vec{s}^{\prime}=\langle 1,-2,1\rangle$ respectively.
(3) Find the plane which contains both the velocity vector to $\vec{r}(t)$ and the velocity vector to $\vec{s}(t)$ at their point of intersection.
Solution: We know two vectors in the plane, so the normal to the plane will be given by their cross product. Their cross product is

$$
\vec{N}_{p}=\vec{r}^{\prime}(1) \times \vec{s}^{\prime}(-1)=(10,3,-3)
$$

Plugginging a point into the equation of a plane that we know, $\vec{r}(1)=\langle 2,3,5\rangle$

$$
10 x+3 y-3 z=d
$$

we get that $d=2 \cdot 10+3 \cdot 3-3 \cdot 5=14$.
(4)
(5) Show that the function

$$
\begin{gathered}
\vec{r}(t)=\left\langle 1+t^{2}, 1+t^{2}, t\right\rangle \\
-2 x+3 y+z=1 .
\end{gathered}
$$

does not intersect the plane

Then find the closest point of the vector valued function to the plane by two methods:

- Finding where the velocity of $\vec{r}(t)$ is parallel to the plane
- Taking the distance function between a point and the plane, and minimizing it.

Are these two always going to be the same?
Solution:To show that they do not intersect, plug the formula of the curve into the formula for the plane component wise. Since $-2\left(1+t^{2}\right)+3\left(1+t^{2}\right)+1(1+t)$ is always greater than 1 , so the plane cannot intersect the curve.
The velocity vector of the curve is given by $\vec{r}^{\prime}(t)=\langle 2 t, 2 t, 0\rangle$. We want to see when this is parallel to the plane. This occurs when this velocity vector is perpendicular to the normal vector of the plane. So, we solve for t such that

$$
\vec{r}^{\prime}(t) \cdot \vec{N}_{p}=0
$$

Substituting, we get

$$
\langle 2 t, 2 t, 1\rangle \cdot\langle-2,3,1\rangle=0
$$

Solving for this, we see that $t=-1 / 2$.
For the second part, we can you the "plane point distance formula"

$$
D=\frac{\left|a x_{0}+b y_{0}+c z_{0}+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}
$$

and substitute our curve in for the values $\left\langle x_{0}, y_{0}, z_{0}\right\rangle$. From this we get

$$
D(t)=\frac{\left|-2\left(1+t^{2}\right)+3\left(1+t^{2}\right)+1(1+t)-1\right|}{\sqrt{(-2)^{2}+3^{2}+1^{2}}}=\frac{t^{2}+t+1}{\sqrt{14}}
$$

Removing the absolute value signs, and taking the derivative, we need to find the value of t making $2 t+1=0$, which is when $t=\frac{-1}{2}$.

