Discussion Problems, Vector Valued Functions I

(1) Find the acceleration at time 3 of the vector valued function

$$
\vec{r}(t)=\langle 1+\sin t, \sin t, 1\rangle
$$

(2) Find the velocity vectors and positions where these two vector valued functions intersect:

$$
\begin{aligned}
\vec{r}(t) & =\left\langle 1+t, t+2,2 t^{2}+1\right\rangle \\
\vec{s}(t) & =\left\langle 3+t, t^{2}+2, t+4\right\rangle
\end{aligned}
$$

(3) Find the plane which contains both the velocity vector to $\vec{r}(t)$ and the velocity vector to $\vec{s}(t)$ at their point of intersection.
(4) Show that the function

$$
\begin{aligned}
\vec{r}(t) & =\left\langle 1+t^{2}, 1+t^{2}, 1+t\right\rangle \\
& -2 x+3 y+z=1 .
\end{aligned}
$$

Then find the closest point of the vector valued function to the plane by two methods:

- Finding where the velocity of $\vec{r}(t)$ is parallel to the plane
- Taking the distance function between a point and the plane, and minimizing it. Are these two always going to be the same?

