Quiz, Feb 8

NAME:

0.1. Cross Product. Compute the following Cross Products:

$$\langle 1,2,1\rangle\times\langle 1,4,5\rangle \qquad \qquad \langle 7,-1,3\rangle\times\langle -14,2,-6\rangle$$

0.2. Lines and Planes. Find the equation of a plane which is parallel to the plane 2x - 2y + z = 2 and is distance 6 away.

0.3. **Projections.** Show that $\text{Comp}_{\vec{u}}(\vec{v} \times \vec{u}) = 0$. (Please include both a geometric explanation, and a computation on two vectors $\vec{v} = \langle v_x, v_y, v_z \rangle$ and $\vec{u} = \langle u_x, u_y, u_z \rangle$ confirming your geometric explanation.

Bonus Problem. Worth no points! Let $F_1, \ldots F_k$ describe the faces of a polyhedron. Let $\vec{N_1}, \ldots \vec{N_k}$ be the outward pointing normal vectors to these faces, with $|\vec{N_i}| = \operatorname{Area}(F_i)$. Prove that for any vector \vec{b} , we have $\vec{b} \cdot \vec{N_1} + \vec{b} \cdot \vec{N_2} + \cdots + \vec{b} \cdot \vec{N_k} = 0$