Worksheet, Feb 3

0.1. Lines and Planes.

(1) Find a plane P that contains the origin and the line ℓ defined by

$$
\begin{aligned}
& x=t+1 \\
& y=-1 \\
& z=-t
\end{aligned}
$$

Solution: We need to find 3 points on the plane. The points we can use this example wil be given by the origin, and 2 points on the line, $\ell(0)=(1,-1,0)$ and $\ell(1)=(2,-1,-1)$. Then we have two vectors in this plane, given by $\langle 1,-1,0\rangle=(1,-1,0)-(0,0,0)$ and similarly $\langle 2,-1,-1\rangle$. The normal to the plane can be found by taking the cross product of these vectors, giving us $\vec{N}=\langle 1,1,1\rangle$. So, the equation for the plane is given by

$$
(1) x+(1) y+(1) z=c
$$

for some constant c that we need to find. By checking this equation on a single point (say, the origin,) we get that $c=0$. So the equation of the plane is

$$
(1) x+(1) y+(1) z=0
$$

(2) Using the same line and plane from the above example, find a new line ℓ_{1} which

- Contains the origin
- Is perpendicular to our original line ℓ.

Solution:The vector from the origin to the point $\ell(t)$ is simply $\langle t+1,-1,-t\rangle$. We want to know when this is perpendicular to the direction that ℓ travels in, which is $\langle 1,0,-1\rangle$. So we want to find the value of t solving

$$
0=\langle t+1,2 t-1,-t\rangle \cdot\langle 1,0,-1\rangle=t+1+4 t-2+
$$

which is when $t=\frac{1}{2}$. So the direction that the line travels in is

$$
\ell(1 / 6)=(3 / 2,-1,-1 / 2)
$$

We can scale this direction to something easier to look at, so the direction the new line travels in is $\vec{v}=\langle 3,-2,-1\rangle$.

Slick Way, first solving problem 3 The direction that this new line travels in can be found by taking the cross product of the normal vector of the plane, and the direction that ℓ travels in. We compute

$$
\langle 1,2,-1\rangle \times\langle 1,1,1\rangle=\langle 3,-2,-1\rangle
$$

The equation of a line is given by $\ell_{1}(t)=p_{0}+\vec{v} t$, where \vec{v} is the direction of travel and p_{0} is some initial point. By assumption, the new line contains the origin, so the equation of this new line is

$$
\begin{gathered}
x_{1}(t)=3 t \\
x_{2}(t)=-2 t \\
x_{3}(t)=-1 t
\end{gathered}
$$

(3) Why is it that ℓ_{1} is contained in the plane P ?

Solution:Because it contains 2 points from P - the origin, and a point on the line ℓ. If a plane and a line agree on 2 points, then the line is contained inside the plane.
(4) Find a unit vector perpendicular to the plane $3 x+y-z=2$.

Solution:A perpendicular vector is given by the coefficients of the equation. So we know that a perpendicular vector is $\vec{N}=\langle 3,1,-1\rangle$. To get a unit vector, we scale this vector by $\frac{1}{\mid \vec{N}} \mathrm{~m}$ which gives us the unit vector $\langle 3 / \sqrt{1} 1,1 / \sqrt{1} 1,-1 / \sqrt{1} 1\rangle$.
(5) Show that if P_{1}, P_{2}, P_{3} all contain a common line, then the normal vectors \vec{n}_{1}, \vec{n}_{2}, and \vec{n}_{3} to these planes all lie in the same plane.
Solution:Let \vec{v} be the direction of the common line. Then $\vec{n}_{1} \cdot \vec{v}=\vec{n}_{2} \cdot \vec{v}=\vec{n}_{3} \cdot \vec{v}=0$. Therefore, they are contained in the normal plane to \vec{v}.
(6) Describe an algorithem which finds the minimal distance between 2 lines (which does not involve taking a derivative!) Solution:Let the first line be given by $t \vec{v}_{1}+p_{1}$, and the second by $t \vec{v}_{2}+p_{2}$. Then the shortest distance between these two lines is a line which is perpendicular to both of them. So we want to find a new line $t \vec{v}_{3}+p_{3}$ which intersects both of our other lines perpendicularly. Therefore $\vec{v}_{3}=\vec{v}_{1} \times \vec{v}_{2}$. We now look at the plane swept out by the lines travelling in direction \vec{v}_{3} which have an initial point on the first line $t \vec{v}_{1}+p_{1}$. This plane has normal direction

$$
\vec{N}=\vec{v}_{1} \times \vec{v}_{3}
$$

and contains the point p_{1}. Once we have found the equation of this plane, whe just need to check where it intersects the line $t \vec{v}_{2}+p_{2}$. Then we will know the point p_{3}.

