Worksheet, Feb 3

0.1. Lines and Planes.

(1) Find a plane P that contains the origin and the line ℓ defined by

$$
\begin{aligned}
x & =t+1 \\
y & =-1 \\
z & =-t
\end{aligned}
$$

(2) Using the same line and plane from the above example, find a new line ℓ_{1} which

- Contains the origin
- Is perpendicular to our original line ℓ.
(3) Why is it that ℓ_{1} is contained in the plane P ?
(4) Find a unit vector perpendicular to the plane $3 x+y-z=2$.
(5) Show that if P_{1}, P_{2}, P_{3} all contain a common line, then the normal vectors \hat{n}_{1}, \hat{n}_{2}, and \hat{n}_{3} to these planes all lie in the same plane.
(6) Describe an algorithem which finds the minimal distance between 2 lines (which does not involve taking a derivative!) Hint: Set up the first line as $t \vec{v}_{1}+p_{1}$ and the second as $s \vec{v}_{2}+p_{2}$.

