WORKSHEET, FEB 3

0.1. Lines and Planes.

(1) Find a plane P that contains the origin and the line ℓ defined by

$$x = t + 1$$
$$y = -1$$
$$z = -t$$

(2) Using the same line and plane from the above example, find a new line ℓ_1 which

- Contains the origin
- Is perpendicular to our original line ℓ .

(3) Why is it that ℓ_1 is contained in the plane *P*?

(4) Find a unit vector perpendicular to the plane 3x + y - z = 2.

(5) Show that if P_1, P_2, P_3 all contain a common line, then the normal vectors \hat{n}_1, \hat{n}_2 , and \hat{n}_3 to these planes all lie in the same plane.

(6) Describe an algorithm which finds the minimal distance between 2 lines (which does not involve taking a derivative!) *Hint: Set up the first line as* $t\vec{v}_1 + p_1$ and the second as $s\vec{v}_2 + p_2$.