WORKSHEET, FEB 1

0.1. Cross Product of vectors.

(1) Find 2 vectors perpendicular to both \vec{v} and \vec{u} :

$$=\langle 1,3,2\rangle$$
 $\vec{v}=\langle -1,0,3\rangle$

Solution:One possibility is the cross product of \vec{v} and \vec{u} .

 \vec{u}

$$\langle 1, 3, 2 \rangle \times \langle -1, 0, 3 \rangle = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 3 & 2 \\ -1 & 0 & 3 \end{vmatrix}$$

$$= \hat{i} \begin{vmatrix} 3 & 2 \\ 0 & 3 \end{vmatrix} - \hat{j} \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} + \hat{k} \begin{vmatrix} 1 & 3 \\ -1 & 0 \end{vmatrix}$$

$$= (9 - 0)\hat{i} - (3 - (-2))\hat{j} + (0 - (-3))\hat{k} =$$
 (9, -5, 3)

Another vector can be found by taking any scaling of this vector, such as $\langle -9, 5, -3 \rangle$. (2) Find the area of the triangle with edges given by vectors

$$\langle 1,1,1\rangle, \langle 2,-1,0\rangle$$

Solution: The area of such a triangle is $|\vec{u} \times \vec{v}|/2$. This gives us

$$\langle 1, 1, 1 \rangle \times \langle 2, -1, 0 \rangle = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 1 & 1 \\ 2 & -1 & 0 \end{vmatrix}$$

= $\hat{i} \begin{vmatrix} 1 & 1 \\ -1 & 0 \end{vmatrix} - \hat{j} \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix} + \hat{k} \begin{vmatrix} 1 & 1 \\ 2 & -1 \end{vmatrix}$
= $(1 - 0)\hat{i} - (0 - 2)\hat{j} + (-1 - 2)\hat{k} =$ $\langle 1, 2, -3 \rangle$

The length of this vector is $\sqrt{1^2 + 2^2 + (-3)^2} = \sqrt{14}$, so the area of the triangle is $\sqrt{14}/2$. (3) For which value of a is the following cross product the zero vector?

$$\langle 2, -2, 3 \rangle \times \langle 1, -1, a \rangle$$

Solution:We have that if $\vec{v} = s\vec{u}$, then $\vec{v} \times \vec{u} = 0$. When $a = \frac{3}{2}$, the first vector is a multiple of the second, and so the cross product is zero.

- (4) When in general is $\vec{v} \times \vec{u}$ 0? Solution:We have that if $\vec{v} = s\vec{u}$, then $\vec{v} \times \vec{u} = 0$.
- (5) Explain that if \vec{v}, \vec{u} satisfie

$$\vec{u} \times \vec{v} = \vec{u} \cdot \vec{v} = 0$$

that one of \vec{v} or \vec{u} must be the zero vector.