Worksheet, Feb 1

0.1. Cross Product of vectors.

(1) Find 2 vectors perpendicular to both \vec{v} and \vec{u} :

$$
\vec{u}=\langle 1,3,2\rangle \quad \vec{v}=\langle-1,0,3\rangle
$$

Solution:One possibility is the cross product of \vec{v} and \vec{u}.

$$
\begin{aligned}
\langle 1,3,2\rangle \times\langle-1,0,3\rangle & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & 3 & 2 \\
-1 & 0 & 3
\end{array}\right| \\
& =\hat{i}\left|\begin{array}{cc}
3 & 2 \\
0 & 3
\end{array}\right|-\hat{j}\left(\begin{array}{cc}
1 & 2 \\
-1 & 3
\end{array}\right)+\hat{k}\left|\begin{array}{cc}
1 & 3 \\
-1 & 0
\end{array}\right| \\
& =(9-0) \hat{i}-(3-(-2)) \hat{j}+(0-(-3)) \hat{k}=\quad\langle 9,-5,3\rangle
\end{aligned}
$$

Another vector can be found by taking any scaling of this vector, such as $\langle-9,5,-3\rangle$.
(2) Find the area of the triangle with edges given by vectors

$$
\langle 1,1,1\rangle,\langle 2,-1,0\rangle
$$

Solution:The area of such a triangle is $|\vec{u} \times \vec{v}| / 2$. This gives us

$$
\begin{align*}
\langle 1,1,1\rangle \times\langle 2,-1,0\rangle & =\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & 1 & 1 \\
2 & -1 & 0
\end{array}\right| \\
& =\hat{i}\left|\begin{array}{cc}
1 & 1 \\
-1 & 0
\end{array}\right|-\hat{j}\left(\begin{array}{cc}
1 & 1 \\
2 & 0
\end{array}\right)+\hat{k}\left|\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right| \\
& =(1-0) \hat{i}-(0-2) \hat{j}+(-1-2) \hat{k}=
\end{align*}
$$

The length of this vector is $\sqrt{1^{2}+2^{2}+(-3)^{2}}=\sqrt{14}$, so the area of the triangle is $\sqrt{14} / 2$.
(3) For which value of a is the following cross product the zero vector?

$$
\langle 2,-2,3\rangle \times\langle 1,-1, a\rangle
$$

Solution: We have that if $\vec{v}=s \vec{u}$, then $\vec{v} \times \vec{u}=0$. When $a=\frac{3}{2}$, the first vector is a multiple of the second, and so the cross product is zero.
(4) When in general is $\vec{v} \times \vec{u} 0$?

Solution: We have that if $\vec{v}=s \vec{u}$, then $\vec{v} \times \vec{u}=0$.
(5) Explain that if \vec{v}, \vec{u} satisfie

$$
|\vec{u} \times \vec{v}|=\vec{u} \cdot \vec{v}=0
$$

that one of \vec{v} or \vec{u} must be the zero vector.

