Quiz, Feb 1
Name:
0.1. Lengths of Curves. Find the length of the curve given by the following parametric equations where $1 \leq t \leq 3$

$$
\begin{aligned}
& x(t)=\frac{t^{2}}{2} \\
& y(t)=(2 t+9)^{\frac{3}{2}}
\end{aligned}
$$

Solution:We use the length formula

$$
L=\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

We have that

$$
\frac{d x}{d t}=t \quad \frac{d y}{d t}=3 \sqrt{2 t+9}
$$

Plugging in we get

$$
\begin{aligned}
L & =\int_{a}^{b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t \\
& =\int_{1}^{3} \sqrt{(t)^{2}+(3 \sqrt{2 t+9})^{2}} d t \\
& =\int_{1}^{3} \sqrt{(t)^{2}+18 t+81} d t \\
& =\int_{1}^{3} \sqrt{(t+9)^{2}} d t \\
& =\int_{1}^{3} \sqrt{t+9} d t \\
& =\frac{t^{2}}{2}+\left.9 t\right|_{1} ^{3} \\
& =\frac{9}{2}+27-\frac{1}{2}-9=22
\end{aligned}
$$

0.2. Polar Graphs. Graph the polar equation $r(\theta)=\frac{1}{\sqrt{2}}(\cos (\theta)+\sin (\theta))$ where θ goes from 0 to π. Solution:Three ways to do this:
(1) Calculate some values for $r(\theta)$ and graph them. If you choose

$$
\begin{aligned}
r(0) & =\frac{1}{\sqrt{2}} & r(\pi / 4)=1 \\
r(\pi / 2) & =\frac{1}{\sqrt{2}} & r(3 \pi / 2)=0 \\
r(\pi) & =\frac{-1}{\sqrt{2}} &
\end{aligned}
$$

And plot those points, you get the following picture:

Notice here that $r(\pi)$ plots the same point as $r(0)$. This is because the radius value is negative (2) You can convert Cartesian coordinates by

$$
\begin{aligned}
r(\theta) & =\frac{1}{\sqrt{2}}(\cos (\theta)+\sin (\theta)) \\
r(\theta)^{2} & =\frac{1}{\sqrt{2}}(r(\theta) \cos \theta+r(\theta) \sin (\theta)) \\
x^{2}+y^{2} & =\frac{1}{\sqrt{2}}(x+y)
\end{aligned}
$$

This is the equation for a circle centered at $(1 / \sqrt{2}, 1 / \sqrt{2}$ with a radius of $1 / 2$.
(3) You can use the trig identity $\cos \left(\theta+\theta_{1}\right)=\cos (\theta) \cos \left(\theta_{1}\right)-\sin (\theta) \sin \left(\theta_{1}\right)$. By letting $\theta_{1}=-\pi / 4$, we have

$$
r(\theta)=\cos (\theta-\pi / 4) .
$$

As $\tilde{r}(\theta)=\cos (\theta)$ plots a circle of radius $1 / 2$ centered at $(1 / 2,0)-$ from lecture - we know that this graphs the same circle, just everything is rotated.
0.3. Vector Geometry. Use vectors to show that diagonals of a square are perpendicular to each other. Solution:Almost everybody got the right solution to this, so I am not going to type up the solution. If you have a question about this problem, come ask me during office hours!

Bonus Problem. Suppose that \vec{a}_{i} are a bunch of vectors forming the boundary of a polygon. Show that for any vector \vec{b}, we have

$$
\vec{b} \cdot \vec{a}_{1}+\vec{b} \cdot \vec{a}_{2}+\cdots \vec{b} \cdot \vec{a}_{n}=0
$$

Solution:

$$
\vec{b} \cdot \vec{a}_{1}+\vec{b} \cdot \vec{a}_{2}+\cdots \vec{b} \cdot \vec{a}_{n}=\vec{b} \cdot\left(\vec{a}_{1}+\vec{a}_{2}+\cdots \vec{a}_{n}\right)
$$

Because the \vec{a}_{i} close up to a cycle when placed head - to -tail

$$
\begin{aligned}
& =\vec{b} \cdot 0 \\
& =0
\end{aligned}
$$

On physical interpretation of this is the following. Imagine thata you had a river, which flowed in the direction of \vec{b}. Then draw a polygon with the vectors \vec{a}_{i} somewhere in the river. The amount of flow of water through the i face of the polygon is $\vec{b} \cdot \vec{i}$. Therefore, the sum in question computes the amount water entering the polygon - water leaving the polygon
This should be zero, because there isn't any water accumlating inside of the polygon.

