Discussion Examples, Jan 28

1. Graphing Polar Equations

Problem 1.3.54) Match the polar equations with the graphs. The equations are:

- $r=\ln \theta$
- $r=\theta^{2}$
- $r=\cos 3 \theta$
- $r=2+\cos 3 \theta$
- $r=\cos (\theta / 2)$
- $r=2+\cos (3 \theta / 2)$.

Here are the graphs:

2. Intersections

Problem 10.4.41 Find the intersections of $r_{1}=\sin \theta, r_{2}=\sin 2 \theta$.
To find the intersection of these two curves, we want to find values of θ that make the values of r equal to eachother. One thing to be careful about it that there can be an intersection between to curves r_{1} and r_{2} whenever $r_{1}(\theta)=r_{2}(\theta+2 \pi n)$, or $r_{1}(\theta)=-r_{2}(\theta+\pi+2 \pi n)$.
In this case, we can finding the intersection between a clover and a circle. From drawing out the curves, we expect to find 3 intersections. Setting $r_{1}=r_{2}$ we have

$$
\sin \theta=\sin (2 \theta)
$$

Using the identity $\sin (2 \theta)=2 \sin (\theta) \cos (\theta)$

$$
\begin{aligned}
\sin \theta & =2 \sin (\theta) \cos (\theta) \\
(1-2 \cos (\theta)) \sin (\theta) & =0
\end{aligned}
$$

This occurs either when $\sin (\theta)=0$, or $1-2 \cos (\theta)=0$. Working this out, we get that $\theta=0, \theta= \pm \pi / 3$. Checking those values give us the intersection points.
2.1. Area Enclosed. 10.4. Example 1 Find the area enclosed by one leaf of the clover $r=\cos 2 \theta$.

Based on finding the self intersections, we know that the bounds of the integral are from $-\pi / 4$ to $\pi / 4$. Then the integral formula gives us

$$
\begin{aligned}
A & =\int_{-\pi / 4}^{\pi / 4} \frac{1}{2} r^{2} d \theta \\
& =\frac{1}{2} \int_{-\pi / 4}^{\pi / 4} \cos ^{2} 2 \theta d \theta \\
& =\int_{0}^{\pi / 4} \cos ^{2} 2 \theta d \theta \\
& =\int_{0}^{\pi / 4}\left(\frac{1}{2}(1+\cos 4 \theta) d \theta\right. \\
& =\frac{1}{2}\left(\theta+\frac{1}{4} \sin 4 \theta\right)
\end{aligned}
$$

Evalutated on endpoints gives us

$$
=\pi / 8
$$

