1. Tangents, Arclengths an Polar Coordinates

The spiral is graphed out by the parametric equation

$$
x(t)=t \cos t \quad y(t)=t \sin t
$$

where $t \geq 0$
(1) What is equation for the line which touches the point on the curve $(0, \pi / 2)$?

Solution:To do this, we need to determine the slope of the curve at this point. The slope is given by

$$
\frac{d y}{d x}=\frac{y^{\prime}(t)}{x(t)}=\frac{\sin t+t \cos t}{\cos t-t \sin t}
$$

The point lies on the curve at $t=\pi / 2$. The value of the slope when $t=\pi / 2$ is $\frac{1}{-\pi / 2}=-2 / \pi$. The equation of the line is therefore

$$
y=-2 / \pi x+\pi / 2
$$

(2) Write down an integral which computes the length of a spiral from $t=0$ to $t=2 \pi$.

Solution:The function is

$$
\begin{aligned}
L & =\int_{0}^{t_{f i n}} \sqrt{\left.\left(\frac{d y}{d t}\right)\right)^{2}+\left(\frac{d x}{d t}\right)^{2}} d t \\
& =\int_{0}^{t_{f i n}} \sqrt{(\sin t+t \cos t))^{2}+(\cos t-t \sin t)^{2}} d t \\
& =\int_{0}^{t_{f i n}} \sqrt{1+t^{2}} d t
\end{aligned}
$$

This integral can be solved, but it is a little tricky.
(3) The Limacon is graphed by the polar equation

$$
r=1+c \sin \theta
$$

- What shape is this graph when $c=0$?

Solution: A circle

- Sketch a graph of this when $c=1$.

Solution:

- What is the graph of $r=\cos (\theta)$ look like?

Solution:It is a circle, but centered at the point $(.5,0)$.

- Describe how the Limacon changes as c goes to infinity.

Solution:It looks more and more like a circle centered at the point $(c / 2,0)$.

