
Discussion Examples, Jan 25

0.1. Example One: Slope, Area and Arclength and Surface Area under a circle. An easy problem
where we already know the solution.

• The parametric equation for a circle is given by

x(t) = r cos t y(t) = r sin t

and we let t vary from 0 to 2π.
• The slope of a tangent line to a parametric curve at time t is given by
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dy
dt
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In this case, we compute
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You can verify that this is the slope of the line geometrically using trigonometry.
• To calculate area under a cartesian curve we integrate:

A =

∫ b

a

ydx

By using the substitution y = y(t) and dx = dx
dt dt we can make this an area formula for parametric

curves:
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where t0 and t1 mark the start and ending of the curve. Notice that this only makes sense if x′(t) ≥ 0
for all t or x′(t) ≤ 0 for all t– the curve can’t back around on itself.
Let’s use this in the example of a circle again. Notice here that x′(t) ≤ 0 when t runs from 0 to π.
We’ll compute the area under the semicircle, and double it.
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Which is the area that we know for the upper semicircle.
• Finally, let’s do an example of finding arclength. The arclength formula for a parametric curve is
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In the case for the circle, this becomes
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