0.1. Example One: Slope, Area and Arclength and Surface Area under a circle. An easy problem where we already know the solution.

- The parametric equation for a circle is given by

$$
x(t)=r \cos t \quad y(t)=r \sin t
$$

and we let t vary from 0 to 2π.

- The slope of a tangent line to a parametric curve at time t is given by

$$
\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}
$$

In this case, we compute

$$
\begin{aligned}
& \frac{d y}{d t}=r \cos t \\
& \frac{d x}{d t}=-r \sin t \\
& \frac{d y}{d x}=\frac{r \cos (t)}{-r \sin (t)}=-\tan (t)
\end{aligned}
$$

You can verify that this is the slope of the line geometrically using trigonometry.

- To calculate area under a cartesian curve we integrate:

$$
A=\int_{a}^{b} y d x
$$

By using the substitution $y=y(t)$ and $d x=\frac{d x}{d t} d t$ we can make this an area formula for parametric curves:

$$
A=\int_{t_{0}}^{t_{1}} y(t) \frac{d x}{d t} d t
$$

where t_{0} and t_{1} mark the start and ending of the curve. Notice that this only makes sense if $x^{\prime}(t) \geq 0$ for all t or $x^{\prime}(t) \leq 0$ for all t - the curve can't back around on itself.
Let's use this in the example of a circle again. Notice here that $x^{\prime}(t) \leq 0$ when t runs from 0 to π. We'll compute the area under the semicircle, and double it.

$$
\begin{aligned}
A & =\int_{0}^{\pi}(r \sin t)(-r \sin t) d t \\
& =\int_{0}^{\pi}-r^{2} \sin ^{2} t d t
\end{aligned}
$$

Writing $\sin ^{2} t=\frac{1}{2} t-\frac{1}{2} \cos (2 t)$

$$
\begin{aligned}
& =-r^{2} \int_{0}^{2 \pi}\left(\frac{1}{2} t-\frac{1}{2} \cos (2 t)\right) d t \\
& =-\frac{r^{2}}{2}+\frac{r^{2}}{4} \sin 2 t \quad \text { evaluated from } \mathrm{t}=0 \text { to } \pi \\
& =-\frac{r^{2} \pi}{2}
\end{aligned}
$$

Which is the area that we know for the upper semicircle.

- Finally, let's do an example of finding arclength. The arclength formula for a parametric curve is

$$
L=\int_{t_{0}}^{t_{1}} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t
$$

1

In the case for the circle, this becomes

$$
\begin{aligned}
L & =\int_{0}^{2 \pi} \sqrt{(-r \sin (t))^{2}+(r \cos (t))^{2}} d t \\
& =\int_{0}^{2 \pi} r d t \\
& =2 \pi t
\end{aligned}
$$

