DiscussioN EXAMPLES, JAN 25

0.1. Example One: Slope, Area and Arclength and Surface Area under a circle. An easy problem
where we already know the solution.

e The parametric equation for a circle is given by
z(t) = rcost y(t) =rsint

and we let ¢ vary from 0 to 2.
e The slope of a tangent line to a parametric curve at time t is given by
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You can verify that this is the slope of the line geometrically using trigonometry.
e To calculate area under a cartesian curve we integrate:
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By using the substitution y = y(t) and dz = ‘é—fdt we can make this an area formula for parametric
curves:

b dx
A= i
y(t) 7

to
where tg and ¢; mark the start and ending of the curve. Notice that this only makes sense if 2/(¢) > 0
for all ¢ or 2/(t) < 0 for all t— the curve can’t back around on itself.
Let’s use this in the example of a circle again. Notice here that 2’(t) < 0 when ¢ runs from 0 to 7.
We'll compute the area under the semicircle, and double it.
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Writing sin® t = 3t — & cos(2t)
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Which is the area that we know for the upper semicircle.
e Finally, let’s do an example of finding arclength. The arclength formula for a parametric curve is
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In the case for the circle, this becomes
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