(1) 10.1.37 Consider the parametric equations

$$x_1(t) = e^t \quad y_1(t) = e^{-2t}$$

 $x_2(s) = \cos(s) \quad y_2(s) = \sec^2 s$

By converting each of these curves to a cartesian equation, show they represent the same curve. **Solution:**For the first equation, we have

$$y_1(t) = e^{-2t} = (e^t)^{-2} = x_1(t)^{-2}$$

For the second equation, we have

$$y_2(s) = \sec^2 s = (\cos s)^{-2} = x_2(s)^{-2}$$

Find an equation for t in terms of s that reparameterizes first equation into the second. Solution:Let $t = \ln(\cos s)$.

- (2) Given two curves parametric equations, we can consider their *intersection points* and their *collision points*.
 - An intersection point is where the two equations have the same x and y values, but possibly at different times.

• A collision point is where the two equations have the same x and y values at the same time. Consider the curves given by

$$x_1 = 3\sin t \quad y_1 = 2\cos t$$
$$x_2 = t \quad y_2 = 0$$

Find any intersection or collision points that exist for these 2 equations. Solution:Let's first look for intersection points. That means, we are searching for s and t so that

$$3\sin t = s$$
$$2\cos t = 0$$

The second equation is easier to work with. If there is an intersection point, then $2 \cos t = 0$, which means that $t = \pi/2 + n\pi$. Plugging this into the first equation, we have $3 \sin(\pi/2 + n) = s$, which means that $s = \pm 3$. So, we have to intersections points, one at (3, 0) and the other at (0, 3).

Check! You can verify this geometrically by plotting out the two curves. The first one is an ellipse centered at the origin, and the other plots out the x axis. We expect these shapes to intersect at two points.

Can you come up with a different parameterization of the second equation that turns the intersection points into collision points?

Solution: There are many ways to do this, but we would like it so that at time $\pm \pi/2$ the second curve is at $(\pm 3, 0)$. One possible way to reparameterize this is

$$x_{new}(t) = 6/\pi t \quad y_{new} = 0.$$

Another way that I saw in class (although it does not draw out all of the second curve, depending on the bounds for t) is $x_{new} = 3 \sin t$. Is it always possible to do this? That is, given 2 parametric

curves, can you always reparameterize them in such a way that every intersection point is a collision point?

Solution: This one is tricky and conceptual... come see me during office hours to talk about this one.

(3) Consider the curve

$$x(t) = \cos(t) + \sin(t)$$
$$u(t) = \sin(2t)$$

$$y(t) = \sin(3t)$$

When does this curve achieve a maximal x value?

Find the equation for a vertical line which is tangent to this curve.

By finding the maximum x values and y values, you can get a better idea of what a curve looks like. Graph the curve using this information.