Discussion Problems, Parametric Curves II

(1) 10.1.37 Consider the parametric equations

$$
\begin{gathered}
x_{1}(t)=e^{t} \quad y_{1}(t)=e^{-2 t} \\
x_{2}(s)=\cos (s) \quad y_{2}(s)=\sec ^{2} s
\end{gathered}
$$

By converting each of these curves to a cartesian equation, show they represent the same curve.
Solution:For the first equation, we have

$$
y_{1}(t)=e^{-2 t}=\left(e^{t}\right)^{-} 2=x_{1}(t)^{-2}
$$

For the second equation, we have

$$
y_{2}(s)=\sec ^{2} s=(\cos s)^{-2}=x_{2}(s)^{-2}
$$

Find an equation for t in terms of s that reparameterizes first equation into the second. Solution:Let $t=\ln (\cos s)$.
(2) Given two curves parametric equations, we can consider their intersection points and their collision points.

- An intersection point is where the two equations have the same x and y values, but possibly at different times.
- A collision point is where the two equations have the same x and y values at the same time. Consider the curves given by

$$
\begin{aligned}
x_{1}=3 \sin t & y_{1}=2 \cos t \\
x_{2}=t & y_{2}=0
\end{aligned}
$$

Find any intersection or collision points that exist for these 2 equations. Solution:Let's first look for intersection points. That means, we are searching for s and t so that

$$
\begin{aligned}
& 3 \sin t=s \\
& 2 \cos t=0
\end{aligned}
$$

The second equation is easier to work with. If there is an intersection point, then $2 \cos t=0$, which means that $t=\pi / 2+n \pi$. Plugging this into the first equation, we have $3 \sin (\pi / 2+n)=s$, which means that $s= \pm 3$. So, we have to intersections points, one at $(3,0)$ and the other at $(0,3)$.
Check! You can verify this geometrically by plotting out the two curves. The first one is an ellipse centered at the origin, and the other plots out the x axis. We expect these shapes to intersect at two points.

Can you come up with a different parameterization of the second equation that turns the intersection points into collision points?
Solution:There are many ways to do this, but we would like it so that at time $\pm \pi / 2$ the second curve is at $(\pm 3,0)$. One possible way to reparameterize this is

$$
x_{n e w}(t)=6 / \pi t \quad y_{n e w}=0
$$

Another way that I saw in class (although it does not draw out all of the second curve, depending on the bounds for t) is $x_{\text {new }}=3 \sin t$. Is it always possible to do this? That is, given 2 parametric
curves, can you always reparameterize them in such a way that every intersection point is a collision point?
Solution:This one is tricky and conceptual... come see me during office hours to talk about this one.
(3) Consider the curve

$$
\begin{gathered}
x(t)=\cos (t)+\sin (t) \\
y(t)=\sin (3 t)
\end{gathered}
$$

When does this curve achieve a maximal x value?

Find the equation for a vertical line which is tangent to this curve.

By finding the maximum x values and y values, you can get a better idea of what a curve looks like. Graph the curve using this information.

