Discussion Problems, Parametric Curves II

(1) 10.1.37 Consider the parametric equations

$$
\begin{gathered}
x_{1}(t)=e^{t} \quad y_{1}(t)=e^{-2 t} \\
x_{2}(s)=\cos (s) \quad y_{2}(s)=\sec ^{2} s
\end{gathered}
$$

By converting each of these curves to a cartesian equation, show they represent the same curve.

Find an equation for t in terms of s that reparameterizes first equation into the second.
(2) Given two curves parametric equations, we can consider their intersection points and their collision points.

- An intersection point is where the two equations have the same x and y values, but possibly at different times.
- A collision point is where the two equations have the same x and y values at the same time. Consider the curves given by

$$
\begin{array}{cl}
x_{1}=3 \sin t & y_{1}=2 \cos t \\
x_{2}=t & y_{2}=0
\end{array}
$$

Find any intersection or collision points that exist for these 2 equations.

Can you come up with a different parameterization of the second equation that turns the intersection points into collision points?

Is it always possible to do this? That is, given 2 parametric curves, can you always reparameterize them in such a way that every intersection point is a collision point?
(3) Consider the curve

$$
\begin{gathered}
x(t)=\cos (t)+\sin (t) \\
y(t)=\sin (3 t)
\end{gathered}
$$

When does this curve achieve a maximal x value?

Find the equation for a vertical line which is tangent to this curve.

By finding the maximum x values and y values, you can get a better idea of what a curve looks like. Graph the curve using this information.

