Discussion Problems, Parametric Curves I

(1) Why is it that every curve given as the graph of $y=f(x)$ can be expressed as a parametric curve?

Solution:If $y=f(x)$ is the cartesian equation, take the parametric plot:

$$
x(t)=t \quad y(t)=f(t)
$$

Give an example of a parametric curve which cannot be expressed as the graph of $y=f(x)$ for any function $f(x)$.

Solution:Consider $x(t)=0$ and $y(t)=t$. It is possible to represent a parametric curve as a cartesian curve whenever the function $x(t)$ is invertible.
(2) 10.1.18 Consider the parametric curve given by

$$
x=\tan ^{2} \theta, \quad y=\sec \theta
$$

- Eliminate the parameter θ to find a Cartesian equation of the curve.

Solution:Use the identity $\tan ^{2}(\theta)+1=\sec ^{2}(\theta)$. This gives you $x+1=y^{2}$, or $y= \pm \sqrt{x+1}$.

- Do you think it easier to graph the parametric curve, or the Cartesian one?
- Graph this parametric curve as θ varies between $-\pi / 2$ and $\pi / 2$.
(3) 10.1.45 Given two curves parametric curves, we can consider their intersection points and their collision points.
- An intersection point is where the two curves have the same x and y values, but possibly at different times.
- A collision point is where the two curves have the same x and y values at the same time.

Consider the curves given by

$$
\begin{gathered}
x_{1}=3 \sin t \quad y_{1}=2 \cos t \\
x_{2}=-3+\cos t \quad y_{2}=1+\sin t
\end{gathered}
$$

Find any intersection or collision points that exist for these 2 curves.
Can you come up with a different parameterization of the second curve that turns the intersection points into collision points?

Is it always possible to do this? That is, given 2 parametric curves, can you always reparameterize them in such a way that every intersection point is a collision point?

