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I apologize for any errors and typos present in these notes. They serve as an outline to the lecture.
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0.1 Project Ideas

Here are a few links to topics in the lecture notes that could make good projects:

• Max Min results 1.1.2

• Graph Polynomials 1.2.1

• Probabilistic Methods 1.5.1

• Algebraic Graph Theory 1.3.1

• Algorithms in Graph Theory

• Persistent Homology

• Discrete Morse Theory
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Chapter 1

Graphs and Surfaces

1.1 January 21, January 23

1.1.1 Basic Definitions
Definition 1.1.1

Graph A simple graph G is a collection of vertices V and a set of edges E ⊂ V × V which are unordered in the
sense that if (v,w) ∈ E, then (w, v) /∈ E.

We visually represent a graph by drawing dots for each of the vertices, and drawing an edge between
two vertices if the edge is contained in the set E. For notation, if v and w are the vertices at the ends of
an edge e, we may refer to e by vw. The set of vertices that share an edge with v are called the neighbors of v.

Here are a few examples of graphs.

• The graph with four vertices
V = {1,2,3,4}

and edges given by
E = {12,23,13,14}

Here the graph G may be represented with the following diagram:

4 1 2

3

• Let n ∈ N be a natural number. Then the complete graph on n vertices (written Kn ) is the graph with
n vertices, and an edge between every edge. Here is K5:

A complete graph has 1
2
n(n − 1) edges in it.
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6 Graphs and Surfaces

• Every polyhedra in R3 gives a graph with its edges and vertices. Here is the net of an octahedron:

The first example is that of a graph which can be drawn in the plane with no edges crossing. The second is
an example of one that cannot be drawn in the plane without edges crossing.

Definition 1.1.2
degree Let v ∈ V be a vertex of G. The number of edges connecting to v is called the degree of v and is denoted

deg(v).

For example, every vertex of the octahedron has degree 4 to it. The graph Kn is uniquely identified to be the
graph that has n vertices of degree n − 1.

Claim 1.1.3 Let d(G) be the average degree of the vertices of a graph. Then 2∣E∣ = d(G)∣V ∣.

Proof. By definition, the average degree of the vertices of a graph is given by

d(G) =
1

∣V ∣
∑
v∈V

deg(v).

Each edge contributes +1 to the degree of 2 different vertices. Therefore, the sum of all of the degrees is
equal to half the number of edges. Therefore 2∣E∣ = d(G)∣V ∣. ∎

In particular, this proves the claim above about complete graphs, which is that the number of edges in a
complete graph is n(n − 1)/2.

Corollary 1.1.4 The number of odd degree vertices in any graph is even.

This simple fact about graphs comes into use again and again for some reason.

Definition 1.1.5
Paths and Cycles Let G be a graph. A path in G is a sequence of distinct vertices {vi} such that vivi+1 is an edge in G for

every i. The length of the path is the number of edges in it. A cycle in G is a path P such that the first and
last vertex of P share a common edge.

Paths and cycles are the simplest building blocks to a graph.

Claim 1.1.6 Let δ be the minimal degree of the vertices in G. There is a path of length at least δ in G.

Proof. Let P be a path of maximal length. Let vi be the vertices of the path. Since P is maximal, every
neighbor of the vi are contained in P . Since every vertex has degree at least δ, this means that P must
contain δ different vertices. ∎

1.1.2 Connectivity

The first topological property that we are going to explore is connectedness.

Definition 1.1.7
Vertex Connectedness A graph G is called connected if for any two vertices v and w, there exists a path from v to w. It is called

JHICKS V.2015/04/20.10:27:01



1.1 January 21, January 23 7

k-connected if whenever you remove less than k vertices, the resulting graph remains connected. The
greatest k such that G is k-connected is called the connectivity of G and is denoted κ(G).

Connectedness is a topological property of a graph. Determining the connectedness of a graph is a not a
quick thing to do, however, we can get estimates on the connectedness of average components of the graph
by knowing the average degree of the vertices of a graph.

Theorem 1.1.8
Mader 1972 Every graph with average vertex degree 4k contains a k connected subgraph.

Proof. We instead prove that the graph is k connected if ∣V ∣ ≥ 2k − 1 and ∣E∣ ≥ (2k − 3)(∣V ∣ − k + 1) + 1,
which follows from the average vertex requirement. Our argument will be by induction on the number of
vertices in the graph.

• (Base Case) In the case when the first inequalities is sharp, then ∣V ∣ = 2k − 1 and ∣E∣ =
n(n−1)

2
.

Therefore, G is a complete graph on 2k − 1 vertices, and we can find a Kk in this graph.

• (Inductive Step, type 1) Suppose that the inequality is not sharp. Then pick a vertex of degree less than
2k-3. Then when we remove this vertex, the induction hypothesis still holds.

• (Inductive Step, type 2) Suppose that the inequality is not sharp, and we cannot find a vertex of degree
2k − 3. Then assume for contradiction that G is not k-connected. Then there are two subgraphs
G1,G2 ⊂ G such that G1 ∩G2 has fewer than k vertices. Every vertex in G1 ∖G2 has neighbors only
in G1. Since the minimal degree of each vertex is 2k − 2, we have that G1 has at least 2k − 2 vertices.
Similarly, G2 has 2k − 2 vertices. However, one of the Gi must satisfy the induction hypothesis! This
is because ∣E∣ ≤ ∣E1∣ + ∣E2∣, and so

∣E∣ ≤ (2k − 3)(n − k + 1)

if neither E1 or E2 satisfy the induction hypothesis.

∎

Yet another notion of connectivity is edge connectivity. This is the minimal number of edges that you must
remove to disconnect the graph. However, the vertex connectivity and the edge connectivity are usually not
well related to each other. Take for instance this graph which is only 1-vertex connected, but is highly edge
connected:

Kn Kn

While there is not an easy relation between vertex connectivity and edge connectivity, there is a relation
between path connectivity and vertex connectivity. A graph is k-path connected if any two vertices v and w
can be joined by at least k disjoint path.

Theorem 1.1.9
Menger The path connectedness of a graph is equal to the connectedness of the graph.

Notice the contrast between the maximality of the path connectedness, and the minimality of the vertex set
disconnecting the sets A and B. Exploring Max-Min results would be an interesting project idea.

Proof. We prove a stronger statement: Let G be k-connected, and let A and B be 2 subgraphs. Suppose
that B has at least k vertices. Let b1, . . . , bn ∈ B, with n < k. Let P be a collection of n disjoint paths in
G∖ (B ∖ {b1, . . . bn}) with endpoints b1, . . . bn in B, where n < k. Then there exists a collection P ′ of n+ 1
disjoint paths with endpoints b1, . . . bn, y ∈ B.

JHICKS V.2015/04/20.10:27:01



8 Graphs and Surfaces

P1

P2

Pn

⋮
b1

b2

bn

A B

We induct on the size of G ∖B. Clearly, when B is all of G, this statement is easy to prove. Now, let’s
assume that the statement is true for all B′ containing B. Look at our selection P , and take any new path
connecting A to B.

• It may be the case that this path is disjoint from the paths of P . In this case, we are done.

P1

P2

Pn

⋮
b1

b2

bn

y

A B

• It may be the case that our path intersects a bunch of the other paths. Let x be the last point at which
the new path intersects the old paths. Without loss of generality, we may assume that the intersecting
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1.2 January 30 9

path is Pn.

b1

b2

bn

y

x

BA

Then we will use the inductive hypothesis to form a set of new paths. Let B′ be the subgraph with the
paths x to bn and y thrown in. By the inductive hypothesis, there exists independent paths from A to
b1, . . . b, x, z for some new point z. There is an additional path from x to z and x to bn.

b1

b2

bn

y

x

B′A

z

Now, we are interested where z is in the set B′. There are three cases.

1. z ∈ B. In this case, there is no interaction between z and the paths. Then we are done. (replace y
with z)

2. The point z lies on the path x to bn. Then extend on to bn, and route the path from A to x into a
path from A to y.

3. The point z lies on the path x to y. Then extend the path A to z to y.

∎

1.2 January 30
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10 Graphs and Surfaces

Lemma 1.2.1 Suppose that G is 2 connected. Let v w be two vertices in G. Then if H = G∪P , where P is a path from
v to w, then H is still 2-connected.

Proof. Suppose not. Then G is 2-connected, G ∪ P is not 2 connected. Let v be a cut vertex of G ∪ P .
Clearly, v ∈ P , as if v ∈ G, then v would be a cut vertex of G∪P . If v ∈ P , it separates P into 2 components.
However, each of those components is connected to G by their ends, and therefore G ∪ P ∖ {v} is still
connected. ∎

Theorem 1.2.2 Let G be a 2-connected graph. Then either G contains a 2-connected subgraph H so that G = H ∪ P ,
where P goes between two vertices of H , or G is a cycle.

Proof. G contains a cycle, so it contains a maximal 2-connected proper subgraph H . Look at a vertex
v ∈ G ∖H , and a vertex w ∈H . As G is 2-connected, by Menger’s theorem there exist disjoint paths P1, P2

from v to w. This gives two paths from w to that are contained in H . This is equivalent from a path from G
to itself that goes through H . This contradicts the maximality of H . ∎

Corollary 1.2.3 Every 2-connected graph is generated from a cycle with the subsequent addition of paths.

1.2.1 Minors and Topological Minors

The first question we should answer are which graphs we should consider topologically equivalent. Topolo-
gists are interested in classifying objects up to continuous deformations. While we will not define what the
word “continuously deform” means, it has the intuition of bending objects like they were made of play-doh.
For us, graphs already have a bit of this property. When we draw the visual representation of a graph, we do
not care how we draw the edges of the graph. For example, here are a couple depictions of the same graph:

Both of these describe a circle topologically. Therefore, two graphs being isomorphic mean that the
realizations describe the same object.

Definition 1.2.4
Graph Isomorphic We say that two graphs G and H are graph isomorphic if there exists a bijection φ ∶ VG → VH which

induces a bijection on the edges of the graphs.

Subdivision and Topological Minors

For topological comparisons, graph isomorphism cannot describe the whole entire story. In particular, one
should believe that all cycles topologically describe the same shape, regardless of the number of vertices in
the shape.

JHICKS V.2015/04/20.10:27:01



1.2 January 30 11

One method for discretizing the notion of topological continuity is that of subdivision.

Definition 1.2.5
Subdivision Let G be a graph, and let e be an edge in G. Then the subdivision of G at e is the graph G ÷ e, where the

edge e has been replaced by a new vertex ve and two edges e±. If H is obtained from G by a series of
subdivisions, we say that H is a subdivision of G. If a subdivision of G is contained in H , we say that G
is a topological minor of H . The set of all graphs that contain G as a topological minor is denoted TG.

For example, the cycle on 5 vertices is a subdivision of the cycle on 4 vertices. Here is a graph that contains
every graph on 5 or fewer vertices as a topological minor:

For those of you who have seen some point set topology, if H is a subdivision of G, then H and G are
homeomorphic. If G is a topological minor of H , then G is continuously embeddable into H . Notice that
this is not the same thing as homotopy type, as all graphs are homotopic to a bouquet on k loops, where k is
governed by the edge connectivity of the graph G. Later we will see a deformation that does this kind of
thing. For those of you who want a catchphrase: “subdivision preserves the topological properties of a graph
completely, but doesn’t generally play well with topological properties.” For instance, the connectivity of a
graph is completely independent of its subdivision type. This is really sad!

Exercise 1.2.6 Rigorously formulate the statement “subdivision preserves the topological properties of
graphs completely” and prove it.

Contraction and Minors

A slightly stronger type of graph deformation is contraction along and edge, which is a bit like the inverse
operation of subdivision.

Definition 1.2.7 Let G be a graph, and xy an edge in G. Then define the contraction G/xy to be the graph with vertices of
G less x and y and a new vertex vxy , whose neighbors are those of x and y.

Claim 1.2.8 H is a subdivision of G, then G is a contraction of H .

Notice that the converse is not true– every graph can be contracted to a point.
Similarly, we have the notion of a minor as oppose to a topological minor. A graph G is a topological minor
of H is G is a subgraph of a contraction of H . While it is clear that every topological minor is a minor, it is
not the case that ever minor is a topological minor. An example of such a graph is the Peterson graph, which

JHICKS V.2015/04/20.10:27:01



12 Graphs and Surfaces

contains K5 as a minor, but not a topological minor.

Clearly K5 is a minor of this, however, this graph doe not contain a subdivision which is K5 as every vertex
has degree 3. Asking for topological minor is a stronger property than just a minor.
Contraction doesn’t preserve many of the topological properties of graphs– in fact, there are no topo-
logical invariants based on the contraction type of a graph besides the number of connected compo-
nents.

Exercise 1.2.9 Formulate and prove the statements “there are no topological invariants based on
contraction type.”

However, contraction usually plays well with combinatorial properties of graphs. It is frequently used in
induction arguments of graphs.

Proposition 1.2.10 Let G be a graph. The reliability polynomial RG(p) returns for every value p ∈ [0,1], the probability
that G is connected if every edge of G is disconnected with a probability of 1 − p. It is a polynomial in p
of degree at most ∣E∣.

Proof. We prove by induction on the number of edges. Take any edge e in G.

• With probability p, the edge e is not deleted. Then the probability that G is connected after removing
other edges is RG/e(p).

• With probability (1−p), the edge e is deleted. Then the probability that G is connected after removing
other edges is RG∖e(p).

These two above cases are disjoint. Therefore the probability that G is connected after removing each edge
with probability (1 − p) is pRG/e(p) + (1 − p)RG∖.
Since G/e and G ∖ e each have one fewer edge, their reliability polynomials are both polynomials of degree
at most ∣EG/e∣ = ∣EG∖e∣ = ∣EG∣ − 1. Therefore, RG(p) is a polynomial of degree at most p. ∎

3-connectedness

Now, let’s do a more sophisticated induction argument to prove a classification result for 3-connected graphs.

Lemma 1.2.11 Let G be a graph which is 3-connected with more than 4 vertices. Then there exists an edge e ∈ G such
that G/e is still 3 connected.

Proof. Suppose for contradiction there is no such edge. Define the function f ∶ E × V → V by

f(xy, z) = {Size of the smallest component of G ∖ {x, y, z}}}

Given our hypotheses, we will prove that f is nonconstant, and has no minimal value, which is a contradiction.
First to show that f is nonconstant.

• Pick any edge xy. Since contraction preserves connectivity G/xy is connected. There always exists a
vertex whose removal keeps the graph connected. Therefore one possible value of f is ∣V ∣ − 2.

• On the flip side, given any edge xy, we know that G/xy is 2 connected. Since G/xy is 2 connected
but G is not, we know that vxy is part of a separating set of G/xy. Let z be any vertex such that
(G/xy) ∖ {vxy, z} is disconnected. Then x, y, z separate G, which means that f(xy, z) ≤ ∣V ∣ − 3.
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1.3 February 2 13

Now to show that f has no minimal value. Suppose xy, z is a minimizing set. Then let C be the smallest
component of G ∖ {x, y, z}. We know that z has a neighbor in the component C. Call this vertex w. Notice
that the neighbors of w are entirely contained in C.

We also know that G/zw is 2-connected. By similar argument, this means that the removal of w, z and some
additional vertex u will separate G. Let D be a component of G ∖ {w, z, u} which does not contain xy. We
have that w must have a neighbor in D (otherwise the removal of w would not be necessary). Therefore
D ∩C is nonempty. Furthermore, every vertex of D is contained in C, because it is disjoint from all the
components of G ∖ {x, y, z}.

It does not contain w, so D is a strict subset of C. Therefore D is smaller size than C and is disconnected by
vertices w, z, u. So f(wz,u) < f(xy, z). This is a contradiction! ∎

We can use this lemma to prove a result on the structure of 3-connected graphs:

Theorem 1.2.12
Tutte A graph G is three connected if and only if there is a series of contractions of G to K4, where each

contraction is on edges with vertices of degree greater than 3.

Proof. The forward direction is easy. The other direction is tricky.
Now, suppose that G/xy is 3 connected, and x and y both have degree greater than or equal to 3. Suppose
that G is not 3-connected. Let u, v separate G into two sets. Then it must be the case that xy are in the same
connected component C of G ∖ {u, v}.

• Suppose C contains both x and y. Then G/xy would still be separated by u and v. Contradiction.

• Suppose u, v ∈ {x, y}. Then G/xy is disconnected by vxy , a contradiction.

• Suppose u ∈ {x, y}, and suppose C contains a vertex w ≠ x, y. Then G/xy is still separated by u and
v. Contradiction.

• Suppose u ∈ {x, y}, and C ⊂ {x, y}. Then either x or y has degree less than 3. Contradiction.

∎

1.3 February 2

1.3.1 Algebraic Graph Theory

In this section we introduce a common technique which we will see later employed as a topological method.
Let F2 be the field of two elements. Given a graph G, define the edge space E to be the F2 vector space
generated on a basis E. In other words, elements of E correspond to subsets of G, and the vector addition
corresponds to symmetric difference. Define C, the cycle space, to be the subspace spanned by all the edge
sets giving cycles in E . We will be interested in understanding the algebraic structure of C. In particular, we
are interested in generating sets of C. While this seems like a cumbersome object, it is a convenient tool for
storing a lot of data about G.
For example, an induced cycle of G is a cycle which cannot be made into 2 smaller cycles with the addition
of an edge in G.

Claim 1.3.1 The induced cycles of G generate the space C.

In the case of 3-connected graphs, we can do better.

Theorem 1.3.2
Tutte The cycle space of 3-connected graphs is generated by non-separating induced cycles.
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14 Graphs and Surfaces

First, let’s look at a 2-connected graph where this is not true.

However, this theorem is not an if and only if. For instance, the requirement of 3 connectedness is not
necessary. For instance, any tree will trivially satisfy the requirement that its cycle space is generated by
non-separating induced cycles.

Proof. We use 1.2.1 to prove this by induction on the number of edges.
In order to prove this, we will need to add some terminology. Let e be an edge of G.

• For notation, we will say that a non-separating induced cycles are “basic”, and all cycles generated by
them are “good”.

• Notice that EG/e can be identified with a subspace of EG- however, this identification is not canonical!

• Given a cycle C in G, C/e is identified with a cycle in G/e unless C = C3. If this is the case, we call
C a fundamental triangle. Note that C/e does not necessarily identify to the edge set as C in EG, even
if C does not contain the contracted edge e.

Diestel’s exposition proves this in 3 steps:

1. Every fundamental triangle is basic.
Assume for contradiction that this is not true. Then the removal of the edge from the contraction of the
fundamental triangle would separate G/e, which is a contradiction!

2. If C is an induced cycle in G, but not fundamental, then C + C/e +D = 0 or C + C/e +D = e for
some good D.
This says that the cycle space of G differs from the cycle space of G/e by at most an edge and a
good cycle. Where the edge comes from is obvious. Suppose upon contracting our cycle and lifting it
back up, that we have something which is not a cycle. A quick case check shows that C/e +C is a
combination of fundamental triangles and edges.

3. For every basic cycle C ′ ⊂ G/e, there exists a basic cycle C ⊂ G such that C/e = C.
The proof of this is a little trickier. Assume that we are in the case where the graph G looks something
like the picture below, and the edge being contracted is xy.

x

y

u w

Suppose that cycle C ′ is the one that “goes around” the graph and then through the contracted vertex
vxy . Then we have two candidate cycles– the one that goes through the x vertex, and the one that goes
through the y vertex.

• If Cx separates G, then y is in its own component.

• If Cy separates G, then x is in its own component.

• If both x and y are in their own components, then the only neighbors of x and y are u and w.
However, u and w then separate G,contradicting the connectivity of G.
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Similar arguments can be made for the cases where G does not have the edges ux or uy.

At this point we are able to finish the proof. LetC be any cycle. By induction hypotheses, C/e = C ′
1+. . .+C

′
k,

where each of the C ′
i are basic in G/e. For each i, we have a basic cycle Ci so that Ci/e = C ′

i. This cycle
differs from Ci by possibly a good cycle and an edge by the second claim. So we have that

∑Ci =∑C ′
i + Good cycles and possibly e = C/e + Good cycles and possibly e

Likewise we have that
C = C/e + Good cycles and possibly e

This gives us that
C =∑Ci + Good cycles and possibly e

However, each of the Ci is basic and a cycle in G. So the sum must not include the set e. The sum of basic
cycles and good cycles is good, therefore C is good. ∎

1.4 February 4

We will use some algebraic criterion to classify other sets types of graphs.

1.4.1 Planar Graphs

We are now going to explore embedding of the graph.

Definition 1.4.1 A planar representation of a graph G is a set of vertices V ⊂ R2 and a set of continuous arcs {fe ∶ I →
R2}e∈E indexed by E such that

• If fe(t) = ft′(x′) and t, t′ ≠ 0,1, then e′ = e and x = x′.

• If xy is an edge, then fxy(0) = x and fxy(1) = y.

Note that a graph G has many different planar representations, and it can be difficult to tell what it means for
two planar representations to be the same. We will leave this problem until later- first, we will explore some
properties of planar representations.
Perhaps most importantly, a planar representation of a graph gives us a new object to keep track of: the faces
of a graph. Each connected component of R2 ∖G gives us a face whose boundary components are cycles in
G. Notice that this definition gives us a large “outer face” to the graph. The information contained by the
faces is much more than just their bounding cycles: take for instance these two graphs, which have 1 face
each, are not the same planar graph:

Even without having a rigorous idea of what isomorphic planar graphs should be, we can explore some of
the properties of planar graphs.

1.5 February 5

1.5.1 Graph Colorings I

We’re going to take a slight detour to talk about graph colorings, which are a major tool in graph the-
ory.
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16 Graphs and Surfaces

Definition 1.5.1
Colorings Let G be a graph. A k-graph coloring of G is an assignment f ∶ V → {1,2, . . . , k} such that if xy ∈ E,

f(x) ≠ f(y). The minimal k such that a k coloring of G exists is called the chromatic number of G and
is denoted γ(G).

Colorings, like connectivity, are both influenced by local properties of the graph and by global properties of
the graph. For instance, a local result is:

Claim 1.5.2 Let ∆(G) be the maximal degree of vertices in G. Then G admits a ∆ + 1 coloring.

A global result on coloring is:

Claim 1.5.3 Let G be a graph. Then

γ(G) ≤
1

2
+

√

2∣E∣ +
1

4

Proof. Create a on γ(G) vertices, where each vertex represents one color class from G, and you draw an
edge between two vertices if the color classes have an edge between them. If this is an efficient coloring, then
this multigraph must have edges between every two color classes; otherwise those classes could be labeled
the same way. Since this is a complete graph on γ(k) vertices, G must have at least 1

2
k(k − 1) edges. ∎

In fact, we can improve our local result on coloring by 1.

Theorem 1.5.4
Brooks Let G be a graph which is not an odd cycle or a complete graph. Then γ(G) ≤ ∆(G).

Proof. We induct on the number of vertices. Suppose G does not satisfy the theorem. Then G ∖ v does,
and therefore v must have degree ∆(G). Given a coloring of G ∖ v, we get a ∆-coloring of G where the
neighbors of vi must use each color exactly once– let’s index these neighbors by their color label. Let Hi,j

be the subgraph of G ∖ v which uses the i and j color.

• For all i and j, vi and vj lie in the same component of Hi,j .

• For all i and j, the component of Hi,j that contains i and j is a path from i to j.

• For all i, j, k the paths from vi to vj and vi to vk of Hi,j and Hi,k only intersect in the vertex vi. (As
any other common vertex 2 neighbors colored i and 2 neighbors colored j)

Without loss of generality assume that v1v2 is not an edge of G. Let u be on the path from v1 to v2. It must
be colored 2. Pick a new coloring for G by switching colors 1 and 3 in the path from v1 to v3. Then u is on
the path from v1 = v(3) to v2, and is still colored 2. Since the path from v1 to v2 is still the same color except
at the end, we have that u is in the path from v(1) to v2 and from v2 to v(3). This contradicts the last little
statement we made. ∎

It turns out that neither global or local results allow us to pin down the colorability of a graph. Neither will
information on the connectivity of a graph. For example:

• Average degree does not give us a good pin on chromaticity. Take, for instance, a graph that has a Kn

subgraph but then a huge number of free-floating vertices. This is n colorable, although the average
degree is very small.

• Connectivity does not give us a good pin on chromaticity. Take, for instance the complete bipartite
graph on n and n vertices: this is a graph with vertices v1, . . . vn,w1, . . .wn with edges wivj for every
i, j. This graph is n connected, but is 2-colorable. On the other hand, a tree is a 2 connected graph
which is also 2 colorable.

• Local structure does not give us a good pin on chromaticity. Take for instance this theorem of Erdös:
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Theorem 1.5.5
Erdös There exists a graph G which contains no cycles of size smaller than n, but have chromatic number at

least k, for every n and k.

In order to prove this, Erdös used a technique called the probabilistic method. For all of these difficulties, we
expect that chromatic number of graph is a rather mysterious value to get a good pin on. However, colorings
of graphs have some unexpected properties.
2-colorability is such a nice property that it gets its own special name : bipartite.

Claim 1.5.6 A graph G is bipartite if and only if all of its cycles are even length.

Proof. The right direction is easy. Take any cycle, and try to color it with two colors– this is only possible if
the cycle has an even number of vertices.
For the left direction, take any vertex v ∈ G. Without loss of generality, let G be connected. For any vertex
w, take a path Pw from v to w. If Pw has even length, color w white, otherwise color w black. As all cycles
are of even length, the parity of the length of Pw is independent of path chosen. ∎

Claim 1.5.7 The maximal number of edges in a bipartite graph with at most n vertices if ⌊n/2⌋⌈n/2⌉.

In bipartite graphs, we have another min-max result similar to the min-max result that we saw for connectiv-
ity.

Theorem 1.5.8
König’s Theorem Let G be a bipartite graph. Let U ⊂ V be a subset minimal with respect to the property that every vertex

of v has a neighbor in U . Let F ⊂ E be a subset of edges maximal with respect to the property that all
edges of f are disjoint. Then ∣U ∣ = ∣F ∣.

Usually, this is stated as “the maximal matching is the minimal vertex cover.”

Proof. We will construct a special graph that reduces this to the connectivity statement that we had before.
So we are looking for a graph where:

• The path connectedness gives disjoint edges.

• Vertex connectivity corresponds to vertex covers.

Let VG = V1 ⊔ V2 be a coloring of the vertices of G. Then add additional vertices w1,w2 so that the
neighborhood of w1 is all of V1 and the neighborhood of w2 is all of V2. Then it is the case that a separating
set of vertices for w1 and w2 exactly corresponds to a vertex cover, the maximum number of disjoint paths
from w1 to w2 is exactly the larges set of disjoint edges in G. ∎

In fact, König’s theorem is equivalent to Menger’s theorem.
Two colorability is a rather easy property to look for. Given a graph G with n vertices, determining if
G is 2-colorable is an algorithm that runs in n steps. However, the algorithm to check if a graph is even
3-colorable runs in exponential time with respect to the number of vertices, and is one of the hallmark
“NP-complete” problems.
Colorings of graphs follow some nice algebraic properties:

Definition 1.5.9
Chromatic Polynomial Let G be a graph. For k ≥ 0, define PG(k) to be the number of k colorings of G.

As the name suggest, the chromatic polynomial is a polynomial.

Theorem 1.5.10 PG(k) is a polynomial with integer coefficients of degree ∣VG∣.

Proof. We prove a stronger statement, that the chromatic polynomial satisfies the recursive relation:

PG(k) = PGG ∖ xy(K) − PG/xy(K)
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18 Graphs and Surfaces

for any edge xy. This along, with the knowledge that if Hn is the graph with n vertices and no edges, then
PHn(k) = k

n, will prove that PG(k) is a polynomial with integer coefficients.
The proof of the statement is now quite easy– note that colorings of G are in bijection with colorings of
G ∖ xy where x and y do not have the same color. Further, colorings of G ∖ xy where x and y do have the
same color are in bijection with G/xy. This finishes the proof. ∎

The chromatic polynomial satisfies some very unusual properties:

Theorem 1.5.11
Jackson, Thomassen The zeros of the chromatic polynomials cannot occur in the interval [−∞,32/27] ∖ {0,1}, and are dense

everywhere else.

Interestingly, the roots of chromatic polynomials are not even the algebraic numbers. For instance, φ + 1
may never be the root of a chromatic polynomial. However, the set of all roots of chromatic polynomials is
dense in C. The properties of chromatic polynomials is still not well understood.

1.6 February 6

Claim 1.6.1 Let G be a connected planar graph, and let V,E,F be the set of vertices, edges and faces.

• 2∣E∣ ≥ ∣V ∣

• 2∣E∣ ≥ 3∣F ∣

• ∣V ∣ − ∣E∣ + ∣F ∣ = 2 (Euler’s Formula)

• If ∣V ∣ ≥ 3, then ∣E∣ ≤ 3∣V ∣ − 6.

Proof. The first claim follows from our argument about average degree and edges. Since G is connected, the
average degree is at least 1.
The second claim is similar: every edge belongs to at least 1 face, and every face has at least 3 edges.
The third claim follows from induction on the number of edges. The base case is when G is a tree- then G
has 1 face, n vertices and n − 1 edges. By induction, the addition of every edge creates a new face and a
few edge, so the quantity ∣V ∣ − ∣E∣ + ∣F ∣ remains constant. The third claim follows from triangulation. Fix a
graph G. You can always add an edge to G and keep it planar whenever G has a face which is not a triangle.
When all of the faces of G are triangular, the graph is maximally planar. This means that 2∣E∣ = 3∣F ∣. From
Euler’s formula, we have

∣V ∣ − ∣E∣ + 2/3∣E∣ = 2

from which the claim follows. ∎

Corollary 1.6.2 The only Platonic solids are the tetrahedron, cube, octahedron, dodecahedron or icosahedron.

Proof. Recall that a Platonic solid is one where all the vertices have the same degree and all of the faces have
the same number of edges. We can take any polyhedron and convert it into a planar graph by stereoscopic
projection. Let m be the degree of the vertex, and n the size of each face. Then it is the case that:

2∣E∣ = n∣F ∣

2∣E∣ =m∣V ∣

Therefore, ∣F ∣ =m/n∣V ∣. The formula for Euler characteristic tells us that:

∣V ∣ −m/2∣V ∣ +m/n∣V ∣ = 2

Now, we have some bounds on m and n.

• We know that n is at least 3.
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• The quantity m ( 1
n
− 1

2
) > −1. This means that m cannot be greater than 5.

• m must be at least 3. Valid values of m are now 3, 4, 5.

Tabulating our results we have:

m n ∣V ∣ ∣E∣ ∣F ∣ Shape
3 3 4 6 4 Tetrahedron
3 4 8 12 6 Cube
3 5 20 30 12 Dodecahedron
4 3 6 12 8 Octohedron
5 3 12 30 20 Icosohedron

∎

There is a kind of duality that you might notice here on first inspection. First of, in the proof, it seems like
the values of m and n are exchangeable. This is reflected in the platonic solids that we’ve found- they come
in pairs where the roles of vertices and faces are reversed. This is a general phenomenon among planar
graphs:

Definition 1.6.3 Let G be a connected planar graph. The dual (multi)-graph to G, is the graph G∗ constructed by taking G,
placing a vertex in the middle of each face, and connecting two vertices if their corresponding vertices
share an edge.

A multi graph is a graph where vertices can have multiple edges going between them. This is necessary to
produce the dual of trees, which become bouquets:

Exercise 1.6.4 Prove that G = (G∗)∗.

We can also use these inequalities to show that certain graphs are non-planar:

Lemma 1.6.5 For every n ≥ 5, the complete graph Kn admits no planar embedding. Similarly, the complete bipartite
graph K3,3 has no planar embedding.

Whether K3,3 is embeddable frequently referred to as the “Utilities Problem,” which asks you to connect 3
utilities to 3 apartments without crossing the connections.

Proof. It suffices to show this for n = 5. For K5, we have that ∣E∣ = 10, and ∣V ∣ = 5. This fails to satisfy
∣E∣ ≤ 3∣V ∣ − 6. Therefore K5 is nonplanar.
For K3,3, we know have a similar estimate, with ∣E∣ = 9 and ∣V ∣ = 6. This means that the number of faces
must be 5 by Euler’s formula. Since K3,3 is bipartite, the minimal face size is 4. This means that there must
be at least 10 edges. However, there are only 9 edges, a contradiction. ∎

Kuratowski’s Theorem

In fact, K3,3 and K5 form the essential obstruction to a graph being planar.

Theorem 1.6.6
Kuratowski The following are equivalent:

• G is planar

• G contains K3,3 or K5,5 as a topological minor.

• G contains K3,3 or K5,5 as a minor.

We will prove a number of proposition about K5 and K3,3 first.
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20 Graphs and Surfaces

Proposition 1.6.7 If the ∆(G), the maximal degree of G is at most 3, then the following are equivalent:

• G is a topological minor of H .

• G is a minor of H .

Proposition 1.6.8 The following are equivalent:

• G contains K5 or K3,3 as a topological minor.

• G contains K5 or K3,3 as a minor.

Proof. First, we show that if G contains K3,3 as a minor, it contains it as a topological minor. This follows
from a slightly stronger claim: If the maximal degree of H is 3 or less, then G contains H as a topological
minor if and only if it contains H has a minor. This follows from the fact that if you ban contracting 2 degree
3 vertices together, graph contraction can be reversed by subdividing edges.
So, we only need to show that if G contains K5 as a minor then it contains K5 or K3,3 as a topological minor.
Let H be a maximal subgraph of G which contains K5 as a minor. Look at each of the blobs corresponding
to a vertex of K5. If one of these is not a topological 4-claw, then it has exactly 2 vertices of degree 3. Then
we can find a topological K3,3. ∎

We start with a proof of Kuratowski’s theorem for 3-connected graphs using the contraction lemma that we
have.

Lemma 1.6.9 Every non planar 3-connected graph contains K3,3 or K5 as a minor.

Proof. We induct on the number of edges in the graph. Suppose that G is 3-connected, contains no K5

or K3,3 as a minor. There exists an edge xy such that G/xy is also three connected– furthermore, G/xy
does not contain a K5 or a K3,3 as a minor. By inductive hypothesis this means that G/xy is planar. Take
the union of all vertices that share a face with vxy. This forms a cycle as G/xy − vxy is 2 connected. The
neighbors of x and y are contained within this cycle.
By viewing the vertex vxy as the vertex x, we get a planar embedding of G∖ y. Now we try to add the vertex
y in.
We will only run into a problem if the vertices of y belong to two different faces containing x in G ∖ y. One
can see that the obstructions to such a construction is a topological K3,3 or K5. ∎

Claim 1.6.10 Suppose G is 3-connected and planar. Then there exists a drawing of G which has all
convex faces.

Proof. We induct on the number of edges as before. The base case is K4, and this graph is clearly connected.
Pick xy, an edge of G so that G/xy is still 3-connected. By the induction hypothesis, there exists an
embedding of G/xy so that every face is convex. We can treat the vertex vxy as the vertex x. The addition of
a vertex and edges to the center of any convex face can be done in such a way that every additional edge
creates a convex face. ∎

This means that in particular every single planar graph which is 3 connected can be drawn with straight
edges. In fact, every planar graph can be drawn with straight edges.
We now have enough machinery to prove Kuratowski’s theorem.

Proof of Theorem 1.6. We may assume that G is 2 connected. Let x, y be a cutset of G so that

G = G1 ∪G2 G1 ∩G2 = {x, y}

Then if G does not contain a topological K3,3 or a K5, neither does G1 ∪ xy or G2 ∪ xy. This is because
there is a path from x to y in both G1 and G2. Therefore by induction there exits a planar drawing of both
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G1 + xy and G2 + xy. We can assume that these drawings both have xy as an exterior edge– gluing along
this edge yields a planar drawing of G. ∎

The search for a topological K5 or K3,3 seems like a difficult thing to do in a graph. There is an algebraic
criterion for planarity of a graph as well, which is easier to check.

1.7 February 9

We now look at a criterion for determine planarity algebraically within a graph:

Definition 1.7.1 A subspace U ⊂ E is called simple if there exists a basis for U so that every edge e shows up in each basis
element at most twice.

Theorem 1.7.2 A graph is planar if and only if there is a simple basis for the cycle space.

Proof. In the case of planarity, choose a basis given by the faces of some planar embedding of G. This is a
basis as every cycle C is given by the sum of cycles on the interior of C with respect to that embedding. As
every edge is contained in exactly 2 faces, we have that this satisfies the requirement (∗).
For the other direction, we first that the requirement (∗) is unchanged by the minor property. This is by the
projection of EG to EG/e. The only time that the cycle space changes dimension under this projection is
when you contract a triangle– but in this case, you remove on cycle, and one basis element which contained
the contracted edge. This means that contraction does not change the property of having a simple basis for
the cycle space. Similarly, removing edges does not change the property of having a simple basis for the
cycle space. By Kuratowski’s theorem, it therefore suffices to show that subdivisions of K3,3 and K5 do not
satisfy this criteria in order to prove the converse direction.
Let’s do K5 first. We have that dim(C(K5) = 6. Therefore any basis has 6 elements in it. There is an
additional element C so that the collection of basis elements and C represents every edge exactly two or
0 times. This collection of 7 cycles contains at least 21 edges, however, there are only 10 edges in K5, a
contradiction.
Similarly for K3,3, we know that the cycle space has dimension 4. Given some basis of 4 elements, we have
an additional element C so that the collection of basis elements and C represents every edge exactly two or
0 times. The collection of 5 cycles contains 20 edges, because each cycle has length at least 4. But there are
9 edges total, so again creates a counting problem. ∎

Ok, so we’ve finished the algebraic criteria for planarity. One unfortunate thing about this proof is that we
have to use Kuratowski’s theorem to finish it. Is there a way to prove the planarity condition without this
awkward middle step? To come in a later lecture– or maybe a project?

1.8 February 11

1.8.1 Abstract Duality

Recall earlier we constructed dual multigraphs for plane graphs. For this section, we are going to need a
slightly more rigorous definition of a multigraph.

Definition 1.8.1
Multigraph A multigraph on n vertices is a symmetric n × n matrix with entries in N.

The coefficient in the i, j spot of the matrix denotes the number of edges that lie between the i and j
vertex.
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Definition 1.8.2 A cut of G is a set of edges between two subgraphs H1,H2 with the property that G =H1 ⊔H2. A cut set
is minimal if it contains no smaller cutset in it.

The cut space C∗ ⊂ E is the is the set of all cuts. In many ways it is better behaved than the cycle space, as it
is a space of its own right (we don’t need to take span). To prove this observe that

Claim 1.8.3 Cuts of the from E(v,G ∖ v) span the cut space. The cut space has a simple basis.

Proof. Given any cut E(H1,H2), let v be a vertex of H1. Observe that E(H1 ∖ v,H2 ∪ v) = E(H1,H2) +

E(v,G ∖ v). Also, notice that edges belong to at most 2 sets of the form E(v,G ∖ v). ∎

The cut space serves as a natural dual to the cycle space.

Claim 1.8.4 With the standard inner product on E , we have that (C)� = C∗.

Proof. To show that C ⊂ (C∗)�, it suffices to show that every cycle shares an even number of edges with
each cut. If you think of a cut describing the edges that go between H1 and H2, it is clear that a cycle must
cross those edges an even number of times. So the inclusion is proved.
Now to show that C∗ = C�, we need to show that E /∈ C implies that EḞ ≠ 0 for some cut set F . Now, if E is
not a sum of cycles, then there is a vertex which shares an odd number of edges with E. This is because
every cycle has even degree on every vertex. Now this vertex has a cut set F which has EḞ = 1. This shows
the other inclusion. ∎

Claim 1.8.5 The minimal cuts generate the cut space.

Proof. First, notice that a cut is minimal if and only if the components H1 and H2 are connected.
Let a partition H1,H2 be given. The cut set E(H1,H2) is the disjoint union of the edge sets E(H1,H

k
2 )

over all connected subsets Hk
2 of H2. So, this is a sum of minimal cuts.

∎

So, when can the cut set of some graph be represented by the cycle space of a different graph? Is this
correspondence unique?

Definition 1.8.6 We say that two multigraphs G and G∗ are abstract dual if there is a bijection of the edges so that
CG = C∗G∗ .

Claim 1.8.7 G and G∗ planar dual implies that G and G∗ are abstract dual.

Proof. Let F ⊂ EG be a minimal edge cut that separates G. This creates 2 components. The intersection of
all the faces contained in one region and contained in the other region should have the property that each
face only contains 2 edges from the minimal cut set– as only 2 edges are required separate the cycle which is
each face. This means that we have a collection of faces which all have degree 2 in the dual. This gives us a
collection of cycles. Of course, it can’t be a collection of cycles, as this would cause various separate regions
by the Jordan curve theorem. ∎

The other direction is clear. So this means that G and G∗ planar dual imply that G and G∗ are abstract dual,
and G and G∗ are abstract dual. In other words, the abstract dual of an abstract dual is itself.
In fact, abstract duality is equivalent to planarity.

Theorem 1.8.8
Whitney A graph is planar if and only if it has an abstract dual.

JHICKS V.2015/04/20.10:27:01



1.9 February 12 23

Proof. The forward direction we just proved– the dual multigraph is a candidate dual. For the other direction,
notice that the cut space of G∗ has a simple basis, therefore the cycle space of G has a simple basis, therefore
G is planar. ∎

1.9 February 12

1.9.1 Coloring II

Lemma 1.9.1 Every planar graph contains a vertex of degree 5 or fewer.

Proof. We have the following inequality from before:

∣E∣ ≤ 3∣V ∣ − 6

Assume that every vertex has degree 6 tells us ∣E∣ ≥ 3∣V ∣. This is a contradiction. ∎

Corollary 1.9.2 Every graph is 6 colorable.

Proof. By induction. Remove a vertex of degree 5. The rest of the graph is 6 colorable. Since the vertex has
degree 5, there is nothing that prevents us adding in the vertex and coloring it the remaining color. ∎

We use this to help prove the 5 color theorem.

Theorem 1.9.3 Every graph is 5 colorable.

Proof. By induction. Select a vertex v of degree 5, and color the remaining graph. By our induction
hypothesis, the remainder of the graph is 5 colorable. We may assume that the neighbors wi of v are colored
1,2,3,4,5, and let’s index them by these colors cyclically around v.

• Suppose there is not an i, j colored path between vi and vj . Then vi and vj belong to separate
connected components of the subgraph colored i, j, therefore in one component we can switch their
colors, This reduces the colors in the neighborhood of v to 4 colors, so we can color the graph with 5
colors.

• The above must be the case, as a 13 path cannot intersect a 24 path, but the existence such paths would
create a topological K3,3 within our graph, contradicting planarity.

∎

There is of course the infamous 4 color theorem:

Theorem 1.9.4 Every planar graph is 4 colorable.

This theorem was historically broken by a computer, and we will not go into the proof of it here. However, it
is a good time to introduce an equally hard theorem which is equivalent to it:

Definition 1.9.5 A snark is a 2-edge-connected graph with every vertex degree 3 and edge coloring requiring 4 colors.

It is obvious that every edge coloring requires at least 3, and no more than 4 colors.

Theorem 1.9.6 Every Snark contains the Peterson graph as a minor.
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Proof of Four color theorem. We want to show that non existence of a 4 coloring on G will give non
existence of a 3 coloring on this new graph. So given a 3 coloring of the graph H will give me a 4 coloring of
G. A 3 coloring of the edges of a triangulation gives us a 4 coloring of the graph. So, this gives us necessarily
a snark on dual graph. This means that the dual is non-planar, as every snark contains a Peterson graph and
therefore a K5 as a minor. ∎

Now I want to briefly want to explore coloring graphs on surfaces, which is (surprisingly) completely
solved.

Theorem 1.9.7 Let Σ be an oriented surface which is not a sphere of genus g. Then no more than ⌊
7+√1+48g

2
⌋ colors are

required to color any graph on Σ. Even more surprisingly, that many colors are required in general.

Proof. First, we have Euler’s inequality for graph, which is

∣V ∣ − ∣E∣ + ∣F ∣ ≥ 2 − 2g

which tells us that
∣E∣ ≤ 3∣V ∣ + 6(g − 1)

Let δ be the minimal degree of a vertex of g. Then

δ∣V ∣/2 ≤ ∣E∣ ≤ 3∣V ∣ + 6(g − 1)

which tells us that
(δ − 6)∣V ∣ ≤ 12g − 12

because ∣V ∣ ≥ δ + 1 we have
(δ − 6)(δ + 1) ≤ 12g − 12

which simplifies to δ ≤ 7+√1+48g
2

giving us a minimal vertex. By the same induction argument as before, we
have that every graph is at least this colorable.
The surprising result is that this is result is enough! Here is an example of K7 drawn on the torus. ∎

It’s not that hard to get to this case by construction– in fact, its on your homework.

Exercise 1.9.8 Let K(g) be the size of the largest Kn that can be embedded in a surface of genus g.
Find functions K−(g) ≤K(g) ≤K+(g) so that K−(g) −K+(g) < 2

√
g.

1.10 February 13

1.10.1 Surfaces

We are going to start moving toward the developing surfaces before we move onto the higher dimensional
cases.

Definition 1.10.1 A triangulated surface is a graph G with a prescribed set of 3-cycles with the following properties:

• Each edge belongs to exactly 2 triangles

• There is associated dual graph given by triangles. Take a vertex and look at all of the associated
faces in the dual graph. This forms a cycle.

We denote the set Σ = (V,E,F ) to represent the triangulated surface.

We can go between triangulated surfaces by subdividing edges.
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Definition 1.10.2 Let Σ be a triangulated surface, and e an edge in Σ.
The subdivision of Σ at e is denoted Σ ÷ e, and is the surface with an extra vertex in the middle of e, and
extra triangles containing the new vertex.
The subdivision of Σ at v with neighbors N1 ∪ N2 = N(v) is the graph with an additional vertex w,
and an edge vw, and edges from v to N1 and w to N2. We then add appropriate faces. This is denoted
Σ ÷ (N1 ∪N2)

We say a surface is orientable if there exists a cyclic ordering on each triangle so that if T1, T2 are two
triangles that share an edge, they have opposite ordering of edges.

The problem that we are interested is when do two triangulated surfaces have a common subdivision. The
theorem that we want to prove is the following:

Theorem 1.10.3 The type of the surface is determined it’s Euler characteristic, and orientability.

Claim 1.10.4 Any topological surface with Euler characteristic 2 is a planar graph.

Missing lots of pictures. We would like to show that a triangulation gives us something like a “simple basis”
for the cycle space. This simply follows from an argument on the number of cycles. We know the dimension
of the cycle space is given by E−V +1. The Euler characteristic tells us that the dimension of the cycle space
is −χ(Σ) + F + 1 = F − 1. This means that the set of faces, will be a basis if they are linearly independent,
less a face.
So, given some cycle, we need to show that it is written as the sum of these other cycles. We will show a
stronger result about surfaces.
First, instead of working with triangulated surfaces, we can work with “rectangulated surfaces”, because
we can subdivide the faces to give us triangles, and combine triangles to give us quadrilaterals. In a
rectangulation, I claim that there is a way to put a flow across the edges so that we see the following flows at
every single face:

Type 0

Type A Type B Type C

Type 1

Type 2
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Start by adding a face of type 0. Then a subdivision argument shows that you can always add faces f to the
old faces H so that if v ∈ f ∩H , we have that there is an edge vw ∈ f ∩H . In other words, you only join
the new face to the old faces at edges. This induces an arrow on some of the edges of f . Make all the other
arrows point outward.
This is an algorithm that clearly produces a labeling of all of the faces.

Claim 1.10.5 If the Euler Characteristic is 2, there exists a labeling that does not use faces of type 1.

Notice that adding faces on each step of type A, B, C does not change the Euler characteristic. Adding faces
of type 1 lowers the Euler characteristic by 1, and it the only way to do so. You only add a face of type 0
once, while adding faces of type 2 raises the Euler characteristic by one.
Based on this, you know that there is at least one face of type 2 for every face of type 1 you have drawn. Take
the last face of type 1 you added, and start making a path along the edge arrows. Whenever you encounter a
face of type ABC, travel directly across it. This will give you to a face of type 2. Now reverse every arrow
that you walked across. This converts all the type 2 to type C, and converts type 1 to type C. The type ABC
faces are permuted.
So, by the fact that the Euler characteristic is 2, we know that there is an arrow labeling of edges that does
not use type 1. Now add faces to your diagram in an order induced by the arrow labeling. By adding faces
of type A first, then type C, then type B, you at every step add a face which is linearly independent of the
remaining faces. Therefore you have f − 1 linearly independent cycles. This tells us that face space is a basis,
and that you have a planar graph. ∎

So, where do we go from here? We show that every surface can be cut into a surface of lower degree in a
controlled manner by using this kind of decomposition.

1.11 February 18

We want to show that we can cut apart a surface in a controlled manner. Right now we have a labelling every
surface in such a way that we have a minimal number of critical points is achieved. Using this Label, we
want to show that you can simplify a surface in some way.

Definition 1.11.1 Given 2 surfaces Σ1 and Σ2, with cycles of same length Ci ⊂ Σi, with Σi∖Ci = Σ1
i ⊔Σ2

i two disconnected
components surfaces with boundary with χ(Σ1

i ) = 1, we define the connected sum Σ1#C1,C2Σ2 to be the
surface (Σ2

1 ⊔Σ2
2)/(C1 ∼ C2).

Claim 1.11.2 Connected Sum has the following properties:

• (Dependence on Type 1) The type of (Σ1#Σ2) is independent of the cycle chosen.

• (Dependence on Type 2) If Σ1 ∼ Σ′
1 then (Σ1#Σ2) ∼ (Σ′

1#Σ2)

• (Associativity) (Σ1#Σ2)#Σ3 = Σ1#(Σ2#Σ3)

• (Commutativity) Σ1#Σ2 = Σ2#Σ1

• (Identity) If χ(Σ) = 2, then Σ#Σ′ = Σ′

• (Grading) Define the Barred Euler Characteristic χ̄(Σ) = χ(Σ) − 2. Then χ̄(Σ1#Σ2) = χ̄(Σ1) +

χ̄(Σ2).
1

In particular, the first 5 statements tell us that homeomorphism types of surfaces form an graded monoid.

Theorem 1.11.3
Classification of
Surfaces

The Sphere, Torus and Projective Plane generate the monoid of surfaces. In fact this monoid is
⟨T,P ∣ PT = PPP,PT = TP ⟩.

1This is not a real thing, but it will be useful for this proof.
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Proof. By the work we did in classifying all surfaces of Euler characteristic 2, we know that there is a flow
on the surface that uses a minimal number of rectangles of type 1. Let f be the last rectangle type 1. Let H
be all of the faces that were added after that rectangle. Because we can reverse the flow, we know that H is a
planar graph with boundary. We ask how this boundary glues into the remainder of the surface. Does H ∪ f
have one cycle in the boundary, or does it have 2 cycles in the boundary?

• If it only has one cycle boundary component, then H ∪ f and G ∖ {H ∪ f} is a decomposition of the
surface which both have cycle boundary components. We have removed a projective plane from the
space, and thereby decreased the Euler characteristic.

• If it has 2 boundary components, let f ′ be the next rectangle of type 1. We know that it has flows to
each of the two boundary components. Take the faces in the path of those flows and call that H ′. Then
H ∪ f ∪H ′ ∪ f ′ is connected with boundary which is circle. We have therefore removed an Barred
Euler Characteristic -2 piece from our manifold, and have reduced it.

By repeating the above process, we can write every surfaces as the connected sum of spheres, projective
planes, and barred Euler characteristic -2 pieces. We simply need to classify these.

1.12 February 20

The barred Euler characteristic -2 pieces are simply the Torus and the Klein Bottle. If you have Euler
characteristic −2, then you are composed of two parts– a flow from the bottom of the surface and a flow from
the top of the surface. There are 2 cases.

1. Both the top and bottom parts have 2 boundary components.

(a) You glue these together and the orientations of the cylinders are compatible. In this case, you
have a torus.

(b) You glue these together, and the orientations are non=compatible. In this case, you have a Klein
bottle.

2. Both the top and bottom parts have 1 boundary component. In this case, you glue together a Klein
bottle.

We need to justify that the Klein Bottle is equal to two 2 projective planes. A good picture can be found here:

http://people.maths.ox.ac.uk/hitchin/hitchinnotes/Geometry_of_surfaces/Chapter_1_Topology.pdf

∎

1.12.1 Odds and Ends- Discrete Curvature

In this section we prove a small result of Discrete curvature:

Definition 1.12.1 Let Σ have a linear embedding into Rn, so that every edge is a line segment, and every face is contained
in some 2-dimensional subspace. Then at each vertex v, define the curvature

κ(v) = 2π ∑
wvu

∠wvu

as 2π less the measure of each angle that contains v in radians.

Example 1.12.2 In the case of a standard embedding of the cube, κ(v) = 2π − 3 ⋅ (π/4) = π/4.

By taking a sum of the curvature over each vertex, we get the total curvature, κ(Σ).
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Theorem 1.12.3 Let Σ be a linearly embedded surface. Then κ(Σ) = 2πχ(Σ).

Proof. Write out the sum 2π(V −E + F ), and think of this as a distribution of weights onto the faces of the
surface.

• 2πV gets distributed by adding an angle worth of weight to each of the faces containing a vertex. This
leaves a surplus of κ(v) of weight at every vertex.

• −2πE gets distributed by adding a weight of −π to each face containing a specified edge.

• 2πF gets distributed by adding a weight of 2π to each face.

Now at each face, we have a weight of −(n− 2)π +∑∠v. But (n− 2)π is the sum of the interior angles of a
face with n sides, so this contribution is zero. We are left with the surplus of κ(v) weight to distribute. So
the sum of the curvatures is equal to 2π times the Euler characteristic. ∎

1.12.2 Odds and Ends- Sperner’s Lemma

We digress for a moment to talk about the 2 dimensional case of Sperner’s lemma, which discusses colorings
of triangulations. A triangulation is a network of vertices and edges, where every face of this network is a
triangle.

Theorem 1.12.4
Sperner’s Lemma Let T be a triangulation of x + y + z = 1 with x, y, z ≥ 0 with labeled vertices txyz . Suppose each vertex

is colored either red, green or blue in such a way that

• If x = 0, then txyz is not colored red

• If y = 0, then txyz is not colored blue

• If z = 0, then txyz is not colored green

Then there exists a small triangle in the triangulation, ∆ that has the color of all three vertices different.

Proof. We will call the small triangles ∆ rooms, which we will usually identify with their bottom left corner.
We add a “door” to the edge in the array T if the vertices that bound the edge are blue and red. Then all
rooms with just 1 door have all different colors for vertices. Every other room has either no doors or 2 doors.
By construction, one side of T contains only blue and red vertices. If a door separates the interior and the
exterior of T , then it must lie on this blue-green side.

Exercise 1.12.5 Prove that there an odd number of doors that separate the interior of T to the exterior
of T .

For each door on the boundary of T , construct a path that travels through T by going through doors, and
only going through a door once. This process uniquely determines a path for each initially selected door.
This path either terminates in T , or it at some point leaves T through another door. As each path that can
both enter and leave T uses 2 boundary doors, there must be a path that is unable to leave T , as the number
of doors on the boundary of T is odd. This implies that a path gets "stuck" in T , i.e. it moves into a room
with just 1 door. This implies the existence of a red-green-blue room. ∎
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Using Sperner’s Lemma, we prove Brower’s fixed point theorem.

Theorem 1.12.6 Every continuous function f ∶D2 →D2 fixes some point.

Proof. We first prove that there is no function g ∶ D2 → ∂D that acts as the identity on ∂D. Take a
triangulation of D2, and divide ∂D into three components: Red, green, blue. Then a map g ∶ D2 → ∂D
gives a coloring to any triangulation of D2. By Sperner’s lemma, there must be a RGB triangle. This means
that the vertices of the triangle are mapped to the Red, Green and Blue components respectively. This is
impossible, as the map is suppose to be continuous (and therefore uniformly continuous), but an arbitrarily
small triangle is mapped to a set of large size.
With this, it is easy to prove that every function f ∶ D2 → D2 fixes a point. We prove by contradiction.
Suppose that f is a function that has no fixed points. Then define a new function, H(x, t) ∶ [0,1]×D2 →D2

by the following method:

• Suppose that you want to know H(x, t). Draw the points x and f(x).

• Draw a line from f(x) through x. This hits a unique point on the boundary of the circle.

• Define H(x, t) to be that point which is 100 ⋅ t% along the line that you have just drawn. When t = 0,
this should be the identity. When t = 1, H(x, t) always gives a point on the boundary circle.

Notice that the second step in this definition crucially uses the fact that f(x) ≠ x for all x. Additionally, h(x)
is a continuous function. Finally, notice that H(x, t) is a deformation retract to the boundary of the disk.
However, we know that there is no deformation retract of the disk to the circle; this is a contradiction! ∎
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Simplicial Complexes
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2.1.1 Basic Definitions

We begin with some basic definitions.

Definition 2.1.1 A finite abstract simplicial complex is a set S, and a finite set of subsets ∆ ⊂ P(S) which is downward
closed in the sense that if X ∈ ∆ and Y ⊂X , then Y ∈ ∆. Be sure to include the empty element!

We usually denote a simplicial complex ∆ and forego the set S, as we can choose some universal set (such
as N) for all of our finite simplicial complexes.

Example 2.1.2 Here are a few abstract simplicial complexes.

• A graph is a simplicial complex with the property that ∣X ∣ ≤ 2 for X ∈ ∆. The elements of size 2
are called edges, and the elements of size 1 are called vertices.

• A n-simplex is the simplicial complex with a special largest element X ∈ ∆ of size n + 1 with the
property that for all Y ∈ ∆, Y ⊂X .

• Given any simplicial complex, we have a geometric realization of the complex. Choose S with
finite size, and consider the affine space (R+)∣S∣ with coordinates {ei}i∈S . Then to the simplicial
complex ∆, we associate the topological space

∣∆∣ ∶= ⋃
X∈∆

Conv({ei}i∈X)

. This is a topological space. We will avoid working with the geometric realization, because it is not
very combinatorial.

• Let S represent the set of all possible edges on n vertices. Let ∆k be the simplicial complex which
includes edge sets which are k colorable. This gives a simplicial complex.

• The above example extends to a lot of different properties of graph. One could take planarity,
surface embeddability, etc... It turns out that studying the topological properties of these spaces
gives us data on algorithms that try to detect these above properties.

• Given some subset V of a metric spaceM,δ, define the L Vietoris-Rips complex as the set of subsets
of V which have diameter less than L. The structure of the Vietoris-Rips complex is an active field
of research in applied mathematics, image sensing, and communications.

So, we are in fact looking at something interesting here. I want to develop another language for talking about
simplicial complexes.
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Definition 2.1.3 A partially ordered set, or poset for short, is a set P with an order relation ≤ satisfying the properties of
transitivity, reflexivity, and antisymmetry.

Notice that to every abstract simplicial complex, we can associate a poset, by saying that Y ≤X in P (∆) if
Y ⊂X . In this case, we forget the empty face. What properties do all of these Posets have?

Definition 2.1.4 A simplicial poset is a poset with a minimal element 0̂ with the property that for all x ∈ P , the interval
[0, x] is isomorphic as a poset to some Boolean poset Bn.

It is clear that not every poset is a simplicial poset.

Claim 2.1.5 Simplicial posets are the same as abstract simplicial complexes.

To every poset, we can associate a order complex to it, which consists of all chains in the poset. We denote
this simplicial complex as ∆(P ).
If P is a poset with a minimal element, let P̄ be the poset missing that minimal element.

Exercise 2.1.6 What is the structure of ∆(P (∆))?

2.2 2/25

2.2.1 Posets
Definition 2.2.1 Let ∆ be an abstract simplicial complex on the set S, and X ∈ ∆ some simplex. Define the simplex

sdX(∆), the subdivision of ∆ at x to be the simplicial complex on the S ∪ {vX}, with simplices of the
form

• Simplices Y from ∆ which have the property that X /⊂ Y .

• Simplices of the form Y ∪ {vX}, where Y ∈ ∆, and Y ∪X ∈ ∆, but Y does not contain X as a
subset.

In class, we gave a couple of examples of subdivision. Notice that this definition of subdivision agrees with
the definition of subdivision in the case where ∆ describes a graph.

Claim 2.2.2 The simplicial complex ∆(P (∆) is a subdivision of ∆.

Proof. The algorithm is to start taking subdivisions in order of simplices by their dimension. One needs to
show that this is independent of order of subdivision. Notice that this algorithm associates to every simplex
of ∆ a vertex of ∆(P (∆).
Now, given some chain X1 <X2 < ⋯ <Xk in ∆(P (∆)), I need to find some simplex which represents this,
and the way that I need to find this simplex needs to preserve the ordering of chains. When I do this type
of subdivision, I get a vertex for every simplex in ∆. We would like to show that for every chain C in X1

of length ∣X1∣, there is a unique set YC ∈ ∆(P (∆) with ∣YC ∣ = ∣X1∣. We create this set Y inductively as
follows:

• We say a chain D is saturated if there is no chain D′ with same endpoints such that D ⊂D′. So in this
context, the chain C is saturated.

• sdX1X1 has maximal simplices corresponding to saturated chains of length 2. These correspond to
the ∣X1∣ − 2 dimensional simplices in X1.

• By induction, each ∣X1∣ − 2 dimensional simplex X2 has the property that all chains of simplices of
length ∣X2∣ in X2 are associated uniquely with a ∣X2∣ − 1 simplex in ∆(P (X2).
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• Show that ∆(P (X2)) ⊂ ∆(P (X1)).

• Show that every ∣X2∣−1 simplex in ∆(P (X2)) is associated to a unique ∣X1∣−1 simplex in ∆(P (X1))

• Therefore, every chain of length ∣X1∣ can be associated to a unique ∣X1∣ − 1 simplex.

Once we have the identification of the maximal chains, the smaller chains are identified by subsimplex. ∎

A more in depth proof of this can be found in Combinatorial Algebraic Topology by Kozlov, Proposition
2.23.

Definition 2.2.3 The Euler characteristic is the sum χ(∆) = ∑X∈∆ −1∣X ∣.

While this sum makes sense for topological reasons, is there a combinatorial reason that we might study
it. Indeed, before mathematicians made the connection of topology to posets, combinatorially had already
come up with a function which returns the Euler characteristic in certain cases.

Definition 2.2.4 Given any poset P , define the incidence algebra I(P ) to be the functions f ∶ {intervals of P}→ k, where
k is some field. The operation on the incidence algebra is convolution, which states that given some
element p in the incidence algebra,

f ∗ g([x, z]) = ∑
x≤y≤z

f(x, y)g(y, z)

The reason that this is called convolution is that in the case where your poset looks like n, you have the
∑n∈N f(a,n)g(b, n), which looks a bit like the convolution sum. These things show up naturally in the
study of analytic number theory. Usually in this case, one looks at the poset of numbers under the relation of
divisibility. Here are a few examples of interesting functions that exist in every single poset:

Example 2.2.5

• The delta function is the function that returns 1 if the interval is trivial, and zero otherwise.

• The ζ function is the function that returns one on every interval. You should think of convolution
against ζ as being the same as integration.

• It turns out that the zeta function is invertible! The Möbius function µ(a, b) is defined by the
following relation:

µ(x, z) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 x = z
−∑x≤y<z µ(x, y) x < y

0 otherwise

Let’s do an example of a Mobius function. Then µ(a, b) = µ(b/a). On the poset of natural numbers
ordered by divisibility, the Möbius function is equal to −1k, where k is the number of distinct prime
divisors, and 0 if n contains a square.

Claim 2.2.6 The delta function is the identity.

Claim 2.2.7 The Mobius function is the inverse of the ζ function.

Proof. We need to show that the µ ∗ ζ(x, z) = 1 if x = z, and 0 otherwise. We prove by induction on the
size of the interval.
We need to show that ∑x≤z≤y µ(x, z) = 1 is x = y, and 0 otherwise. But this follows immediately from our
induction, as this is equal to µ(z, z). ∎
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2.3 February 27

So where are these names coming from? In the case of number theory, to every function f ∶ N→ R, we can
associate a new function given by series, called it’s Dirichlet L-function defined by

Lf(s) =
∞
∑
n=1

f(s)

ns

. For instance, to the ζ ∶ N→ R function, we get the infamous Riemann ζ function. Now, multiplication of
Dirichlet L-functions gives us the Dirichlet L function associated to the convolution product we had given
before. In this case, the statement µ ∗ ζ = 0 is the same as saying that 1/Lζ = Lµ. So, studying properties of
the Möbius function gives us data on the Riemann Zeta function.
Another place where the Möbius function shows up is the study of inclusion-exclusion. The general question
is given a collection of objects X , and a set of properties (specified subsets) P on X , it is easy to answer
“how many objects satisfy some set of properties S ⊂ P ,” but hard to answer “ how many objects satisfy
exactly the properties S ⊂ P and no others.”

• Let f(S) be this first function (Satisfies properties S)

• Let g(S) be the second function (Satisfies only properties S).

Notice that going from g to f is very easy. The sets that satisfy the property S, and possibly more properties,
are the sets that satisfy exactly any property T which surrounds S. Think of g as providing a disjoint union
count.

f(S) = ∑
S⊂T⊂P

g(T ).

One can “upgrade” the functions f and g to be elements incidence algebra on Properties ordered by inclusion:

f(S,T ) ∶= {Number of elements which satisfy property T , which also satisfy property S}

g(S,T ) ∶= {Number of elements which satisfy property T , satisfying exactly property S}

Then we can recover our original functions by f(S,X) = f(S) and g(S,X) = g(S).
Now applying the theory of incidence algebras to simplify these expressions:

f(S,T ) = ∑
S⊂U⊂T

ζ(S,U)g(U,T )

which tells us that we should be able to obtain g from U by Möbius inversion. In this case, the Möbius
function is

µ(S,T ) = {
(−1)∣T ∣−∣S∣ S ⊂ T

0 otherwise

So, the Möbius function is really a Natural thing to study! How does it relate to topology for us?

Claim 2.3.1 If P is a poset with maximal element 1 and minimal element 0, then the value of the Möbius
function on [0,1] is ∑c −1∣c∣, where c are the chains of the poset going from 0 to 1.

Proof. By induction. Let 1 be the maximal element. Then

µ(0,1) = − ∑
0≤x≤1

µ(0, x)

But the term on the right counts ever chain with endpoint x which are less than 1. Of course, every such
chain gives us a chain with endpoint 1 of length one longer. By induction hypothesis, we get the desired
sum. ∎

Let P (∆) be the poset of some complex. It comes with a minimal element, and let’s append an extra
maximal element 1, and call this poset (̂P (∆)). Now, the function µ(0,1) on this poset counts the number
of chains. However, the alternating sum of chains in this poset by length gives us the alternating sum of
chains by length in the original poset times −1, which gives us the Euler characteristic.
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2.4 Evasive Properties

We now take a look at combinatorial and computational called evasiveness. Here is the historical context for
the problem:

Definition 2.4.1 Let P be a subset of graphs on n vertices. The property P graph game is a 2 player game. Player two
selects a graph G. Player one is allowed to ask “is the edge eij in G?”? If Player one can determine if
G satisfies property P in fewer than (

n
2
) moves, then player one wins. We say that a graph property is

evasive if there is a graph G which has no winning strategy for player one.

For example, the property of being a complete graph is evasive. Here is a non-evasive property for
graphs:

Definition 2.4.2 A graph is scorpion if there exists 3 special vertices, the sting, tail and body with the property that the sting
is only connected to the tail, and the tail is only connected to the sting and body. The body is connected to
every vertex but the sting.

The algorithm first looks for the special vertices. Notice that once we find any of the special vertices, we can
identify if a graph is a scorpion in linear time. Take any vertex x.

• If x has degree 0, then we are not a scorpion

• If x has degree 1, then it is either a sting, or its neighbor is the body.

• If x has degree 2, then it is either a tail, or one of its neighbors is the body. This can be checked in
linear time.

• If x has degree 3 to n − 3, then it is not very special.

• If x has degree n − 2, then it is the body.

• If x has degree n − 1, then we are not a scorpion.

So, suppose that x has degree 3 to n − 3. Let B be the neighborhood of x. Let S the complement of B. We
know the sting and tail are in S, and the body is in B.

• Pick a vertex b0 of B. Now go through S looking for stings. Whenever find a vertex connected to b0,
delete it from S. When you find a vertex not connected to b0, delete b0 from B.

• Pick a new vertex b1 from the remaining B, and proceed.

This algorithm terminates when we have removed all the vertices from S or from B. If we remove all the
vertices from S, there is no sting, and we are not a scorpion. If we remove the last vertex from B, the last
tested vertex in S must have been the sting (as otherwise we did not delete the body from B at some step...)
Test this to be the sting.
This algorithm only requires you to check far fewer than (n − k)(k)/2 edges, where k is the size of
∣B∣.

Definition 2.4.3 We say that a graph property is monotone if G satisfies P , and H ⊂ G, then H satisfies P . A graph
property is trivial if either every graph or no graph satisfies the property.

2.5 March 2

Conjecture 2.5.1 Every monotone non-trivial graph property is evasive.

So how does this relate to topology? If P is a monotone graph property, it describes a simplicial complex for
us on the set edges. We now rephrase the Evasiveness problem as follows:
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Definition 2.5.2 Let S be the simplex on vertices S, and let ∆ a simplicial complex of S which is known to us. Let X ⊂ S
be some simplex. We play a game asking “is the vertex x in X?′′ If you can solve whether X ∈ ∆ in fewer
than ∣S∣ questions for every X , we say that ∆ is non-evasive, and we say that it is evasive otherwise.

Notice that this is equivalent to solving the graph theoretic problem for monotone graph properties.

Theorem 2.5.3 If χ(∆) ≠ 1, then K is evasive.

In fact, we will prove that every single non-evasive complex is contractible.

Definition 2.5.4 A guessing algorithm for property ∆ of a set S is a binary tree which where every vertex corresponds to
the question “is vertex vk in my set.” On each path , no question may be repeated, and the depth of the
tree is exactly ∣S∣, so the leaves are identified with P(S).

Given a guessing algorithm, a evader is an element X ∈ P(S) with the property that one must ask all k
questions to determine if X is in ∆.
Now, notice that every single guessing algorithm induces a pairing on the vertices of the poset of S with
edges from the Hasse Diagram. This restricts to a matching on the edges of the poset of ∆. Now suppose
that some cell X is a evader. This means that the matching edge from this pairing pairs X with a cell not in
∆! So, existence of evaders is equivalent to an incomplete pairing on ∆.
Now, suppose that you have an algorithm that is has no evaders. This tells you that you have a pairing on the
Hasse Diagram of P (∆). This means that each d face is paired with a d+ 1 face, which means that the Euler
characteristic is 1. (Recall, the empty set gets paired here too!)
This proves the theorem.
In fact, we can do slightly better than this. We can prove that if K is non-evasive, it is homotopy equivalent
to a point.

Definition 2.5.5 Let ∆ be a simplicial complex, and X,Y ∈ ∆ simplices with the property that Y ⊂X . Suppose that there
is no other simplex containing Y . The simplicial collapse of Y along X is the complex ∆ ∖X .

The idea is that if a k-simplex has a face that belongs to no other simplex, we can collapse it by pushing it in.
Here is the basic idea:

Definition 2.5.6 We say that ∆ is contractible if it simplicially collapses to a point. We say that ∆1,∆2 are simplicially
homotopic if they have a common simplicial collapse.

Notice that a simplicial collapse of X along Y states that the dimension of Y is one less than the dimension
of X . So, we can think of a simplicial collapse as dictating some edges on the Hasse diagram. But how can
we think of these edges on the Hasse diagram as giving us a simplicial collapse?

Definition 2.5.7 A set of edges F ⊂ E in the Hasse diagram are called a acyclic partial matching if

No two edges in F share a vertex.

If you orient all the edges of E upwards, and all the edges of F ∖ E downward, there are no directed
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cycles in the poset.

Clearly, every single contraction describes a acyclic matching. One can show that every single acyclic
matching gives you some kind of contraction as well, if you would like. We prove the following theo-
rem:

Theorem 2.5.8 Every acyclic complete matching describes a contraction to a point.

Proof. We induct on the size of the simplex. A complete acyclic matching means that every simplex is
paired. In particular, a maximal simplex X is paired to Y . We claim that Y does not belong to any other
simplex X ′.
Suppose for contradiction that Y belongs to X ′. Pick any Then we have the following picture in the Hasse
Diagram:

X X ′

Y

We know that we can keep on travelling “ down- up” from here on out, as every maximal simplex has a
unique arrow in the wrong direction. This eventually terminates, and gives us a simplex which we can
simplicial collapse upon.

∎

So, it remains to show that every single guessing algorithm gives us an acyclic matching on the poset! With
this, we would be done.

2.6 March 4

We can now prove that every non-evasive complex is contractible.

Proof. We claim that every non-evasive complex has a free face which can be collapsed. Let X ∈ ∆ be some
maximal simplex. Suppose that X has no free face. Since every simplex is paired, X is paired with some
simplex Y less than it. This simplex is contained in X1, another maximal simplex, which is paired with Y2,
and so on. Create a sequence in this fashion. The sequence either terminates and we find a free face, or it
winds up back at X1. Think about how these are laid out on a binary tree. Say that the “no” answers to each
question are on the left, and the “yes” answers on the right. Then we have that each Xi,Xi+1 differ by a
single yes-no question. These questions must be in the negative in each case, and so you move only in one
direction on the tree as you go along this chain.

∎

Today, we move onto simplicial homology, one of the staples of algebraic topology.
When we talked about graph theory, it was pretty useless to ask “how many cycles were in my space.” It was,
however, useful to talk about things like “the dimension of the cycle space.” We want to create something
that mimics this in the simplicial case. However, we first need to make sense of what the cycle space should
be! We need a little bit of fanciness to get these definitions to work out. Let’s start by putting an order on S,
the vertex set of ∆ some simplicial complex.

Definition 2.6.1 Let R be a ring and ∆ a simplicial complex. Define Ck(∆) to R-module generated on a basis of the
k-simplices of ∆. For each X ∈ ∆ with ∣X ∣ = k + 1, let eX be the corresponding basis vector.

What should the “cycles” of this space be? They should be ways that we can glue together the simplices to
get something which “has no boundary” in some sense.
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Definition 2.6.2 Let ∆ be a simplicial complex, and Ck(∆) be as before. Define the differential dk ∶ Ck(∆)→ Ck−1(∆)

on the basis eX
dk(eX) = ∑

v∈X
−1ordX xeX∖x

where ordX v is the position of v in the order of vertices inside of ∆.

Because this minus sign is very annoying, we will usually work with R = Z/2Z. We will also drop the index
on d all of the time.

One can think of d as measuring how much “boundary” a set has. When a set has zero boundary we call it a
“cycle.”

Definition 2.6.3 Let v ∈ Ck(∆) be an element with dv = 0. Then we say that v is a cycle. The space of cycles is denoted
Zk(∆).

Now what about the image of the map d. d measures how much boundary a set has by actually returning its
boundary!

Definition 2.6.4 Let v ∈ Ck(∆) be an element such that v = dw for some w ∈ Ck−1(∆). Then we say that w is a boundary.
The space of all boundaries is denoted Bk(∆).

Naturally we should expect that all boundaries are, themselves, cycles. This equates to proving that
d2 = 0.

Claim 2.6.5 dk−1dk = 0.

Proof. Let eX ∈ Ck(∆) be some basis vector. Then we have that

dk−1dk(eX) =dk−1 (∑
x∈X

−1ordX xeX∖x)

= ∑
x≠y∈X

−1ordX∖x yeX∖{x,y}

Now, notice that summing over x ≠ y means that each subsimplex eX∖{x,y} is counted twice. The order on
the signs though is different– in one, x is counted first, then y, and in the other y is removed first, then x. So,
the sign convention −1ordX will cause these to cancel out. Therefore d2 = 0. ∎

This proof implies that the space of cycles contains the space of boundaries – Bk ⊂ Ck. A question that we
might have is – how much does the space of boundaries fail to be the space of cycles?

Example 2.6.6 An example where the space of boundaries is not the space of cycles

2.7 March 6

The structure that we have just set up is called a chain complex.

Definition 2.7.1 A chain complex over a ring R is a sequence of R-modules Ck along with maps dk ∶ Ck → Ck−1 satisfying
d2 = 0.

We are interested in measuring the difference between the dimension of the space of cycles and the space of
boundaries.
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Definition 2.7.2 Given any chain complex Ck, the kth homology groups are defined by the quotient Hk ∶= Zk/Bk.

The homology groups of a simplicial complex can be thought of measuring the number independent k
dimensional holes that are in your space– the cycles which cannot be filled with shapes that give their
boundary. In the case where R is a field, each of these homology groups is a vector space, and we can
measure it’s dimension.

Definition 2.7.3 If R is a field of characteristic 0, then the quantities dim(Hk) = bk are called the Betti Numbers of the
space.

We delay proofs of the following facts until next week. But they are important facts!

• The homology groups of subdivided spaces are isomorphic.

• If ∆ simplicially collapses to ∆′, they have the same homology groups.

Let’s compute a bunch of homology groups now.

Example 2.7.4 The homology of the n-simplex is

H0
(∆n) = 1

Hk
(∆n) = 0 k ≠ 0

• In the case that n = 0, this is trivial.

• In every other case, we have a simplicial collapse to the point.

Example 2.7.5 The homology of the sphere, Sn. Here, every k cycle for k ≠ n restricts to a cycle in ∆,
so we have that for 0 < k < n, Hk(Sn) = 0. What about for n? The only thing that could possibly be in
homology is the n cycles of ∆n. There is only one element here, and it was canceled out by the boundary
of the top simplex. So Hn(Sn) = 1.

Example 2.7.6 The Torus. Here, we draw the torus with 18 triangles, and a bunch of edges. We use a
combination of topological and geometric insight here. We also compute over F2.

• For vertices, notice that every pair of vertices is connected by a path. Therefore H0(T ) = R.

• For faces, notice that the boundary of some set of faces is 0 if and only every edge is counted twice.
Therefore, the only element of homology is the one that uses all of the faces. This is the same as
saving that H2(T ) = R

• The middle computation is a pain, but we can use algebra instead. There are 27 edges. The image of
the differential must be 8 dimensional to give the proper dimension of homology in H0. Therefore,
the kernel is 19 dimensional. There are 18 faces. One of them is in the kernel, therefore the image
of the differential into C1(T ) is 17 dimensional. This means that the homology is 2 dimensional.

We can do a similar argument over Z. This gives us the same homology groups.

Example 2.7.7 The homology of the Klein Bottle. Notice before that we were not able to distinguish
the Klein Bottle and the Torus via the Euler Characteristic. However, we are able to distinguish them using
homology. The Klein Bottle is also an example where it matters what you choose to use for coefficients.
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2.8 March 9th

Today, we take a break from the topological intuition and explore the powerful tools of homology. Recall the
following definition:

Definition 2.8.1 A chain complex over a ring R is a sequence of R-modules Ck along with maps dk ∶ Ck → Ck−1 satisfying
d2 = 0.

These chain complexes come with a sequence of groups, Hk(C●) ∶= kerdk/ Im dk+1, called the homology
groups.
Chain complexes come with maps between them, just like vector spaces. Of course, these maps come with
additional structure.

Definition 2.8.2 A map of chain complexes is a sequence of maps fk ∶ Bk → Ck which respect the differential in the sense
that dCk fk = fk−1d

B
k .

This is usually written by saying that the following diagram of maps commutes:

⋯ Bk Bk−1 Bk−2 ⋯

⋯ Ck Ck−1 Ck−2 ⋯

d

fk

d

fk−1

d

fk−2

d

d d d d

Maps of chain complexes are well behaved with respect to composition.

Claim 2.8.3 Let f ∶ Ak → Bk, and g ∶ Bk → Ck be maps of chain complexes. Then gf ∶ Ak → Ck is a
map of chain complexes.

Proof. Here, we repress the index k.

dC ○ (gf) = (g ○ dB) ○ f = (gf) ○ dA

∎

Perhaps the most important aspect of maps between chain complexes is that they give us an induced map on
homology.

Proposition 2.8.4 Let f ∶ Ak → Bk be a map of chain complex. Then we have an induced map f∗ ∶Hk(A●)→Hk(B●).

Proof. We need to construct such a map. Our candidate definition is that f∗[a] = [f(a)]. To show that this
is well defined, we need to show that f(a) is actually represents a class of homology of Bk, and that this
definition is independent of the choice of representative for homology.

• To show that is a class of homology, notice that dB(f(a)) = f(dA(a)) = f(0) = 0. We have that
dA(a) = 0 because a belongs to the homology of A. Therefore, f(a) is a member of homology of Bk.

• To show that this is independent of class chosen, suppose that [a′] = [a]. Then it is the case that
a − a′ = dv for some v.

f∗[a] − f∗[a′] =[fa − fa′]
=[f(a − a′)]
=[fdv]

=[dfv] = 0

∎

As maps between chain complexes are maps between R modules, they have the notions of kernels and
images as well.
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2.9 March 11

Today, we prove a number of results in homological algebra.

Definition 2.9.1 A exact sequence is a sequence of maps and objects fi ∶ Ai → Ai−1 such that ker fi = Im fi+1 for every i.

Notice that every exact sequence gives us a chain complex, however the converse is usually false. One can
think of the homology groups of a chain complex as giving us a measure of how much a sequence fails to be
an exacts sequence.

Theorem 2.9.2
Zig-Zag lemma Let A,d● , B,d′● and C,d′′● be chain complexes. Given

0 A B C 0
f g

a short exact sequence, there exists a unique map δ such that the following is a long exact sequence on
homology:

⋯ Hn+1(C) Hn(A) Hn(B) Hn(C) Hn−1(A) ⋯
g∗ δ f∗ g∗ δ f∗

Proof. First, let’s expand the original diagram:

⋮ ⋮ ⋮

0 An+1 Bn+1 Cn+1 0

0 An Bn Cn 0

0 An−1 Bn−1 Cn−1 0

⋮ ⋮ ⋮

d d′ d′′

dn+1

fn+1

d′n+1

gn+1

d′′n+1

dn

fn

d′n

gn

d′′n

dn−1

fn−1

d′n−1

gn−1

d′′n−1

We want to construct a function δ from Hn(C) to Hn−1(A). Select a [c] ∈ Hn(C). Then lift it to c ∈ Cn.
Take an element b in the preimage of c along gn. Then as d′′n(gn(b)) = d

′′
n(c) = 0, we have by commutivity of

the diagram that gn−1(d
′
n(b)) = 0. Therefore, dn(b) ∈ ker gn−1. However, ker gn−1 = Im fn−1 by exactness

of the rows. There therefore exists unique a ∈ An−1 such that fn−1(a) = dn(b). We choose the representative
of a in Hn−1(A) to be δ(c).
Now we have to show that this a is independent of choice of b. Suppose instead we choose b′ in the preimage
of c along gn. Let d′n(b

′) lift instead to a′. As b′ is a lift of c, we have that gn(b) = gn(b
′) = c. Then

b − b′ ∈ ker(gn). By the exactness of the rows, there exists a unique ā ∈ An such that fn(ā) = b − b′. Then
the lifts of d′n(b) and d′n(b

′) in An−1 differ by dn(ā). Therefore, a − a′ = dn(ā) ∈ Im dn. Therefore, a and
a′ represent the same class in the homology Hn−1(A). The function δ is now shown to be well defined on
homology and is the unique class

δ(c) = f−1
n−1d

′
ng

−1
n (c)

∎

Theorem 2.9.3
5-lemma
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Given that the rows of the following diagrams are exact, and that the dashed maps are isomorphisms:

A B C D E

A′ B′ C ′ D′ E′

Then C is isomorphic to C ′.

Proof. We omit proof in these notes. ∎

Notice that the five lemma tells us that if we have a short exact sequence, and the two outside maps are
isomorphisms, then the inside map is an isomorphism. On homology, it tells us if any 2 maps are quasi-
isomorphisms, then the third map is a quasi-isomorphism.

2.10 March 13
Definition 2.10.1 Let A,d and B,d′ be chain complexes. Let f ∶ A→ B and g ∶ A→ B be chain maps. Then we say that f

is chain homotopic to g if there exists a series of maps (called a chain homotopy) hi ∶ Ai → Bi+1 such
that

f − g = d′hi + hi−1d

We write that f ∼ g.

Here’s a diagram that helps visualize the maps involved in a chain homotopy.

⋯ Ai+1 Ai Ai−1 ⋯

⋯ Bi+1 Bi Bi−1 ⋯

d

fghi+1

d

fghi

d

fghi−1

d

hi−2

d′ d′ d′ d′

It is easy to check that chain homotopy is an equivalence relationship on the set of morphism. This next
claim shows the usefulness of chain homotopic:

Lemma 2.10.2 Let f ∶ A→ B and g ∶ B → A be chain maps. Suppose that g ○ f ∼ 1A and g ○ f ∼ 1B . Then f and g are
quasi-isomorphisms.

Proof. Let’s start with a diagram.

⋯ Ai+1 Ai Ai−1 ⋯

⋯ Bi+1 Bi Bi−1 ⋯

⋯ Ai+1 Ai Ai−1 ⋯

d′ d

h
f

d

f
h

f

d

h
d′ d′

g

d′

g g

d′

d′ d d d

The homotopy to the identity map gives us that there exists h such that g ○f −1A = dhi+hi−1d. Suppose that
v ∈HiA. Then v is in the kernel of d, so hi−1d(v) = hi−1(0) = 0. We have that therefore g○f −1A ∈ Im (d),
which is to say that on homology g ○ f = 1A, as we mod out by Im (d) when we take homology.
Of course, a similar proof shows that f ○ g = 1A ∎
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Therefore, to show that a morphism is a quasi-isomorphism, one can just show that it is homotopic to the
identity. As homotopic form an equivalence relationship on the set of morphism, we can quotient out by
homotopic to arrive a new category, the homotopy category of chain complexesC. In this category, f = g if
f ∼ g; in particular, maps who are isomorphisms in the homotopy category are quasi-isomorphisms in the
original chain category. We call this category K(C) .
Why do we work with homotopy? It turns out that if ∆′ is a simplicial collapse of ∆, then there is a map
from C(∆) to C(∆′) which is homotopic to the identity.

Theorem 2.10.3 Suppose that ∆′ is a simplicial collapse of ∆. Then ∆ and ∆′ have the same homology.

Proof. We have a natural inclusion i of ∆′ into ∆, which has a right inverse π by projection. We need to
show that the compositions πi and iπ are homotopic to the identity.
The composition πi is clearly homotopic to the identity, as it is the identity on δ.
Suppose that this is the collapse of X where Y is the free face. Then define h(X) = 0, h(Y ) = X , and
h(dY ) = dX − Y , and 0 everywhere else. This is a homotopy! ∎

With this, we can at least check that all subdivisions of Dk, the k complex, have the same homology. Now,
we bring everything back to the topology. On your homework, you showed that simplicial maps induced
chain maps. We now use this, and the tricks from homology that we have already uncovered, to make classify
lots of different topological spaces.

Theorem 2.10.4
Mayer-Vietoris
Sequence

Suppose ∆ is a simplicial complex, and ∆1,∆2 are two subcomplexes with ∆ = ∆1 ∪∆2. Then there is
a long exact sequence of homology:

⋯→Hk(∆1 ∩∆2)→Hk(∆1)⊕Hk(∆2)→Hk(∆)→Hk−1(∆1 ∩∆2)→ ⋯

Proof. Apply the Zig-Zag lemma to the exact sequence

0→ Ck(∆1 ∩∆2)→ Ck(∆1)⊕Ck(∆2)→ Ck(∆)→ 0

where the first arrow is by inclusion into both components, and the second arrow is signed inclusion into the
union. ∎

This shows us really that we can do a lot of computations!

Example 2.10.5 The Sphere, again. Notice that the sphere Sn decomposes into U,V which are discs
and U ∩ V = Sn−1. By applying the Mayer Vietoris Sequence to this, we can compute the homology of
the sphere.

2.11 March 16
Example 2.11.1 There is no continuous map f ∶Dn → ∂Dn which acts by identity on the boundary. If
so, the identity map of the sphere would factor through the disk. But the sphere has nontrivial homology
in the n − 1 place, so this cannot happen.

Example 2.11.2 Let’s compute the Z/2 homology of RPn. We claim that it is Hk(RPn) = Z/2 for
every n ≤ k. We represent RPn as a simplicial complex by taking the octahedron Sn and quotienting out
by the relation X ∼ −X . We can cover RPn by the quotient of the upper hemisphere, and the quotient of
the equator, which is RPn−1. (In reality, take a slightly smaller version of the upper hemisphere, and a
slightly fattened RPn−1 equator.) Their intersection is the boundary sphere Sn−1 of the upper hemisphere.
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This gives us a long exact sequence

Hn(S
n−1) Hn(U)⊕Hn(RPn−1

) Hn(RPn)

Hn−1(S
n−1) ⋯ H2(RPn)

H1(S
n−1) H1(U)⊕H1(RPn−1

) H1(RPn)

H0(S
n−1) H0(U)⊕H0(RPn−1

) H0(RPn) 0

δ

δ

δ

We have some known replacements that we can make from our knowledge of homology of disks (U ) and
the induction hypothesis.

0 0⊕ 0 Hn(RPn)

Z/2 ⋯ H2(RPn)

0 0⊕Z/2 H1(RPn)

Z/2 Z/2⊕Z/2 H0(RPn) 0

δ

δ

δ
i0⊕j0

Since RPn is connected, the right map is an isomorphism. The inclusion i0 is an isomorphism. The map
j0 is multiplication by 2, because the equator is wrapped around 2 times when it is included in the upper
hemisphere. Since we are working in Z/2 coefficients, this is 0.

0 0⊕ 0 Hn(RPn)

Z/2 ⋯ H2(RPn)

0 0⊕Z/2 H1(RPn)

Z/2 Z/2⊕Z/2 Z/2 0

δ

δ
π1

δ1
1⊕0 (0,1)

Now, the bottom right map (1⊕ 0) is injective. This means that it has no kernel. Therefore, the map δ1
has trivial image, which means that the map π1 is surjective. We also have that π1 is injective, by the long
exact sequence. So this means that H1(RPn) ≃H1(RPn−1

) = Z/2.
This argument continues all the way up the diagram, until the top row. On the top row, exactness clearly
gives us Hn(RPn) =Hn−1(S

n−1).

Theorem 2.11.3
Simplicial Homolgy The simplicial homology of a simplicial complex is independent subdivision.

Proof. Suppose that we want to show that a complex ∆ and a subdivision ∆′ have the same simplicial
homology. We will prove by induction on the size ∆. The base case is for subdivisions of simplices, which
we proved using simplicial collapse and homotopy.
Take any simplex X ∈ ∆. Let s(X) denote the set of ∣X ∣-simplices in ∆ which come from X in the
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subdivision. Then we have a map

f ∶ C●(∆)→C●(∆′
)

eX ↦ es(X)

which is a chain map. We would like to show that f is a quasi-isomorphism.
Now for the induction step. Pick any maximal dimension simplex Y in ∆. Let Ȳ be the subcomplex
generated by Y in ∆. By induction, we know that ∆ ∖ Y has the same homology as ∆ ∖ sd(Y ). We have
the Mayer-Vietoris decompositions:

0 C(Ȳ ∩∆) C(Y )⊕C(∆ ∖ Y ) C(∆) 0

0 C(s(Y ) ∩∆′) C(s(Y ))⊕C(∆′ ∖C(s(Y )) C(∆′) 0

f ∣Ȳ ∩∆ f ∣Y ⊕f ∣C∖Y

Now the first map and second maps are quasi-isomorphisms by the induction hypothesis. By the 5 lemma,
the last map must also be a quasi-isomorphism. ∎

Definition 2.11.4 Let f ∶ Sn → Sn be a simplicial map. Since f∗ ∶ Hn(S
n) → Hn(S

n) must be of the form x ↦ nx, we
say that n is the degree of the map f .

There is in fact a way to generalize this to manifolds in general, but we have to define what a manifold is.
Studying the degree of maps will have interesting implications for us topologically. Topology will give tell
us things about combinatorics. Here are two problems that we are interested in exploring:

Example 2.11.5 Suppose that you have a necklace, with k ⋅n beads on it. The beads come in t different
colors, and each color occurs k ⋅ ai times, where 1 ≤ i ≤ t. k thieves would like to split the necklace
fairly, which means that each thief gets the same number of beads of each color. They would like to split
the necklace using the minimal number of cuts possible. Clearly, we can construct an example that uses
(k − 1)t cuts. What is the worst and best case scenario for the number of cuts that they will need.

Example 2.11.6 A Kneser graph KGn,k is the graph whose vertices correspond to k elements subsets
of an n element set. Two vertices are connected if their corresponding subsets are disjoint. What is the
chromatic color of this graph?

2.12 March 18

Both of these proofs will depend on a famous theorem, the Borsuk-Ulam Theorem.

Theorem 2.12.1
Borsuk-Ulam Suppose a map f ∶ Sn → Sn has the property that f(x) = f(−x) for every x. Then the degree of f is

odd.

Proof. We use a special exact sequence related to double covers with coefficients in Z/2. Consider the exact
sequence :

0 Ck(RPn) Ck(S
n) Ck(RPn) 0

τ π∗

where π∗ is the map induced by the projection, and τ is a lifting map defined by τeX = ∑Y ∈π−1(X) eY .
Because we work in Z/2 coefficients this is an exact sequence.
Being odd will be the same as saying that f is an isomorphism on the Z/2 homology Hn(S

n). Because
the map f commutes with the antipode map, it factors to f̃ ∶ RPn → RPn. This means that we have 2 exact

JHICKS V.2015/04/20.10:27:01



46 Simplicial Complexes

sequences:

0 Ck(RPn) Ck(S
n) Ck(RPn) 0

0 Ck(RPn) Ck(S
n) Ck(RPn) 0

τ

f̃

π∗

f f̃

τ π∗

This gives us a pair of exact sequences on homology.

Hn(RPn) Hn(S
n) Hn(RPn) Hn−1(RPn) Hn−1(S

n) ⋯

Hn(RPn) Hn(S
n) Hn(RPn) Hn−1(RPn) Hn−1(S

n) ⋯

f∗ f∗ f∗ f∗ f∗

⋯Hk(S
n) Hk(RPn) Hk−1(RPn) Hk−1(S

n) Hk−1(RPn) Hk−2(RPn) Hk−2(S
n) ⋯

⋯Hk(S
n) Hk(RPn) Hk−1(RPn) Hk−1(S

n) Hk−1(RPn) Hk−2(RPn) Hk−2(S
n) ⋯

f∗ f∗ f∗ f∗ f∗ f∗ f∗

⋯H1(S
n) H1(RPn) H0(RPn) H0(S

n) H0(RPn) 0

⋯H1(S
n) H1(RPn) H0(RPn) H0(S

n) H0(RPn) 0

f∗ f∗ f∗ f∗ f∗

We would like to show that all of the downward arrows are isomorphisms.

Ok, so on the final row we know that the downward arrow is an isomorphism, because a point is sent to a
point. As we know the homology of a sphere is 0, we have that most of these diagrams break into 4 row
blocks:

0 Hk(RPn) Hk−1(RPn) 0

0 Hk(RPn) Hk−1(RPn) 0

f∗ f∗

So knowing that the f∗ ∶Hk−1(RPn)→Hk−1(RPn) is an isomorphism tells us f∗ ∶Hk(RPn)→Hk(RPn)
is an isomorphism. This tells us by the 5-lemma that the map f ∶Hn(S

n)→Hn(S
n) is an isomorphism. ∎

Corollary 2.12.2 For every map f ∶ Sn → Rn, there exists x such that f(x) = f(−x)

Proof. We prove by contradiction. Consider the map f(x)−f(−x)
∣f(x)−f(−x)∣ which goes from the sphere to the equator.

This is an antipodal map, and therefore must be odd. However, any map from the sphere to it’s equator is
trivial on top homology, and therefore even. This is a contradiction! ∎

Suppose that we have sets1 U1, . . . Un ⊂ Rn. Let H be a hyperplane in Rn. Then H divides Rn into two half
spaces, and cuts every set Ui into U±

i . Suppose additionally we have a volume function µ that assigns to
subsets of Rn a volume.

Theorem 2.12.3
The Ham Sandwich
Theorem

Let U1, . . . Un ⊂ Rn. Then there exists a hyperplane H such that µ(UH+
i ) = µ(UH−

i ).

1measurable, but not really important
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Proof. We define a function Sn−1 → Rn−1 as follows. For every point x ∈ Sn−1, there is a vector v ∈

Rn which points in the direction of x. There is also a 1-dimensional family of hyperplanes which lies
perpendicular to the vector v.

Claim 2.12.4 Let v be a direction. Then there exists a hyperplane Hv perpendicular to v which bisects
the first body, that is UHv+

1 = UHv−
1 .

This is because these hyperplanes are parameterized by translation along v, and the intermediate value
theorem guarantees such a value.
Given this claim, we create a function Sn−1 to Rn−1 as follows. Because for every v ∈ Sn−1, create the map

f ∶ Sn−1
→Rn−1

v ↦(µ(UHv+
2 ), µ(UHv+

3 ), . . . , µ(UHv+
n ))

By the Borsuk Ulam theorem, there must be a point where f(v) = f(−v). This tells us

µ(UHv+
i ) = µ(UH−v+

i ) = µ(UHv−
i )

for every i, which means that every single object is bisect. Boom. ∎

2.12.1 Necklaces

A necklace with n beads on k different colors is a string a1, a2, a3, . . . an each ai ∈ {1, . . . , n} is one of the
k different colors. The necklace splitting the problem is the following:

Question 2.12.5 Suppose that we have a necklace with an even number of beads of each color. Suppose
we would like to split this necklace between the two thieves. The thieves want an equal number of beads
of each color. How many cuts do we need to add to the necklace?

Theorem 2.12.6 No more than k cuts are required to cut the necklace.

Lemma 2.12.7 The moment curve in Rk is the curve

γ ∶ R→ Rk

x↦(x,x2, x3, . . . , xk)

Every hyperplane H intersects γ in at most k places.

Proof. We “build” the necklace in Rk as follows. For each color, we have a color set

Uk = {γ(x) ∣ x ∈ [i, i + 1) with i ∈ ak}

By Borsuk-Ulam, there exists a hyperplane which cuts this necklace in half. The cut only intersects the
necklace γ at k places. If you cut a segment not at an endpoint, there is another endpoint of the same color
which hasn’t been cut at the endpoint. Change the cut so it only intersects γ at integer values. This is a valid
cutting of the necklace. ∎

2.12.2 Graphs

Definition 2.12.8 The Kneser graph KGn,k is the graph whose vertices are k-element subsets of {a1, a2, . . . , an} where
we put an edge between 2 vertices if their corresponding sets are disjoint.
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Definition 2.12.9 A coloring of a graph G is an assignment of colors 1,2, . . .m to the vertices of a G such that no edge has
monochromatic endpoints. The smallest such m such that 1,2, . . . ,m colors G is called the chromatic
number of G.

Theorem 2.12.10 The chromatic number of KGn,2n+k is k + 2.

To prove that k + 2 colors suffices, order the elements of the 2n+ k element sets. For each i in this set, let Ki

be the collection of all n element subsets whose least element is i.
Then K1,K2, . . . ,Kk+1 are all disjoint. Finally, throw in the lucky set Kk+2 ∪⋯ ∪Kn+k+1. If two sets are
disjoint, they lie in different Ki. This gives an upper bound for the chromatic number of KGn,2n+k.
To prove the lower bound we need the following lemma:

Lemma 2.12.11 If Sn is covered by n + 1 sets, each of which is either closed or open, then one of the sets contains a pair
of antipodes.

Proof. Take Ui to be the open sets covering Sn. Define Sn → Rn by

fi(x) = inf
y∈Fi

d(x,−x).

By Borsuk-Ulam, we have that f(x) = f(−x) for some x ∈ Sn. If fi(x) = 0 for some x and all i, then we
have that x,−x ∈ Ui. Otherwise, we have that none of the coordinates are zero, which means that x,−x are
not contained in any of the sets Ui for i ≤ n. This means that x,−x are contained in Un+1. ∎

Proof of Kneser Conjecture. We prove the following equivalent statement to the Kneser Conjecture: If the
n-element subsets of a (2n + k) element set are partitioned into k + 1 classes, then one of the classes must
contain a pair of disjoint subsets. Put the 2n + k points on Sk+1 randomly. You can do this in such a way so
that no k+2 points lie on a great k sphere. Suppose for contradiction there were coloring classesA1, . . .Ak+1

of the subsets of the 2n + k points. For each of these i ∈ 1, . . . , k + 1, let Ui be all the points x ∈ Sk+1 such
that the open hemisphere centered at x contains an n-subset of Ai.
Take the set V to be all the points where are not contained in one of the Ui. Now it is clear that V,U1, . . . Uk+1

are k + 2 sets that cover Sk+1. By the lemma, there exists x such that x,−x are contained in one of these
covering sets. We have 2 cases to try and build a contradiction off of.

• If F contains x, then H(x) and H(−x) contains fewer than n points from our 2n+k randomly placed
points. This means that k + 2 points are on the boundary of H(x), which means that k + 2 points lie
on a great circle. Bad!

• If x,−x are contained in a Ui. We know that Ai contains a set of points in H(x), and that Ai contains
a set of points in H(−x). But the points in H(x) and H(−x) are disjoint! This is a contradiction to
the structure of Ai.

∎

2.13 March 20

This lecture is a survey of the topics that we’ll be covering in the last month after the break:

Definition 2.13.1 A knot is an injective piecewise linear function i ∶ R/Z→ R3.

We will be interested in studying knots up to equivalence of continuous deformations. Because we are not
usually able to study these functions abstractly, we realize them with diagrams representing their planar
projections. Such a diagram is a curve in the plane, where every self-intersection is designated as an over
crossing or an under crossing. The main question we will ask is: how do we determine if two planar
representations give the same knot? To do so, we will develop a number of invariants that classify knots.
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1. The first invariants that we will study are knot polynomials. Knot polynomials are something like the
graph polynomials that we defined at the very start of the course, such as the chromatic polynomial
and the connectivity polynomial. In fact, we should think of these polynomials as prescribing some
kind of inclusion/ exclusion relation in knots. If you are interested in knot polynomials, there are 2
possible routes that you could take for a large project:

• Knot Polynomials have some deeper topological or geometric definition. Look into this! In
particular, the Alexander polynomial is define by taking some covering space of R3 ∖K. In this
way the Alexander polynomial is related to the fundamental group. More to come on that later!
But you could look at the Alexander Polynomial as a project idea.

• There is a way to think of many polynomials (including the ones we defined for knots) as coming
from a kind of filtered homology theory. In other words, there is a way to construct a chain
complex C●(K) which has Euler characteristic equal to these knot polynomials. This is super
weird! Furthermore, the homology of this chain complex is an invariant of the knot. The first
example of a knot homology invariant is Khovanov homology, and you could look at this as a
project.

2. Another invariant that we will study are braids. Braids are a bit like knots, but they are better behaved
algebraically. A braid is a bunch of strings that go from one plane to another. They form a group under
composition. We will study this group, and understanding the relations in this group will give us an
algebraic way to categorize knots. Unfortunately, figuring out if two braids represent the same knot is
just as difficult as figuring out if two knots are the same. If you are interested in the braid group, there
is a nice representation of the braid group as a certain set of automorphism of the free group– one can
think about the braid group as the permutation group which “doesn’t forget” previous permutations
made. This is the Artin Presentation.

3. We will also look at the fundamental group of the knot complement. We will give one way to compute
this group, but it’ll be pretty rough at first. If you were interested in learning about the fundamental
group of knots, you could do a project on the interplay between the braid group and the knot group.

4. Finally, we will look at the theory of Seifert surfaces, which are bounding surfaces for knots. It’s pretty
easy to show that such a surface exists, but the topological properties of such surfaces are interesting.
In particular, the minimal genus of these surfaces is an invariant that we would like to study.

5. Time permitting, we’ll look at things like slice genus, or knot cobordisms.
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Chapter 3

Knots

All of us have some idea of what a “knot ” should be: something involving tangled string. The key feature of
a knot is that it cannot be untangled- if knots could be easily untangled then they would be rather useless
in their practical applications. In math-world, we have a slightly similar definition of a knot. We can’t talk
about open pieces of sting- strings with two ends- because all knots formed with a string with ends can be
untangled with sufficient effort. However, we can talk about knots formed on loops of strings: these knots
may not be untangled. I will propose some definitions of a knots, and why we do not use these definitions.

• A knot is the image of a circle in space. We can represent this as a function, f ∶ S1 → R3. However,
this does not work, as the function 0 ∶ S1 ↦ 0 should not represent a knot.

• A knot is the image of a circle under an injective function, F ∶ S1 ↪ R3.

However, this doesn’t work as one can come up with an injective function whose knot has nasty image. For
instance, we can consider a knot with an infinite number of crossings. This type of knot has all kinds of
interesting analytic properties, but unfortunately does not describe a practical knots. We could also have
embeddings that have cuts in them. We solve this problem by asking our knots to be continuous. We will
restrain ourselves to knots that do have these desired properties. With that in mind, we use this definition of
what a knot is:

Definition 3.0.2 A knot is an injective, continuous functionK ∶ S1 ↪ R3 whose image is a finite collection of line segments.
We will frequently refer to the image set as the knot.

Definition 3.0.3 A link is an injective, continuous function L ∶↪ R3 whose image is a finite collection of line segments.
We will frequently refer to the image set as the link.

What does this mean? It means that we formally think of a knot (or link) as a collection of line segments.
However, we will frequently represent knots with curved lines, with the full understanding that if we want to,
we could approximate these curves accurately with a finite number of line segments.

Figure 3.1: An example of a Knot and it’s rectification
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a

b

Figure 3.2: A homotopy between curves a and b

We want to talk about deformations of knots as well, and make sure that these deformations reflect our
understanding of how real knots work. To do this, we need to define some topological ideas.

Definition 3.0.4 Let f, g ∶ X → Y be two continuous functions. A homotopy between f and g is a continuous function
H ∶X × [0,1]→ Y which satisfies the following properties:

H(x,0) = f(x)

H(x,1) = g(x)

A homotopy is a continuous deformation of one function into another. Visually, we think of a homotopy as a
continuous deformation of the images of f and g into each other. This is wonderful, except for a few small
details. We are not sure that this transformation preserves the wonderful properties of knots that we want.
Homotopy is too weak a condition to preserve our knot structure. We present two improvements here.

Definition 3.0.5 Let f, gX ↪ Y be two continuous functions. A isotopy between f and g is a continuous injection
H ∶X × [0,1]↪ Y which satisfies the following properties:

H(x,0) = f(x)

H(x,1) = g(x)

Even this isotopy is not good enough for us. If we consider a overhand knot being pulled tight, this constitutes
an isotopy between our knot and the unknot. We need to do a little better. We want our knot transformations
to mean “no piece of string gets too close to another piece of string." We start making this definition formal
by describing triangle moves.

Definition 3.0.6 A ∆-move on a knotK (pronounced either delta-move or triangle move) is a replacement of a line segment
ac in the knot with two line segments ab and bc in such a way that the triangle bounded by abc does not
intersect the knot K. The new set of edges given by ab and bc constitutes a new knot.

If two knots differ by a sequence of ∆-moves, we say that they are equivalent via an ambient isotopy. We
may also so say the knots are equivalent, the same knot, deformable, etc. We will have lots of names for
these kinds of things, their obvious relationship is there. The name equivalence rightfully suggests that
ambient isotopy places an equivalence relation on the set of knots.

Since we can’t actually visualize knots well in 3-dimensions, we frequently look at the their two dimensional
projections. In order to make these pictures understandable, we require that the projection only have double
intersections.

Definition 3.0.7 Let K ∶ S1 → R3 be a knot. A projection π ∶ R3 → R2 is a knot projection of K if there are no points
x, y, z ∈ S1 such that π(K(x)) = π(K(y)) = π(K(z)). When we draw the picture of the knot, we can
assign over and under crossings based on the projection. Such a picture is called a knot diagram.
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With some analysis, one can show that such a projection always exists if K is a knot. It is interesting to note
that given a knot diagram of K, one can always construct a knot K1 which is ambient isotopic to K. This
means that somehow, knot diagrams are an accurate way to represent different knots. We can now formulate
the basic question of knot theory. How can we tell if two knot diagrams represent equivalent knots. There
are a few ways to figure this out. We have some moves to transform diagrams into each other. We call theses
the Reidemeister moves.

Theorem 3.0.8 All ∆ transformations can be described by either ∆ moves in the plane which do not effect crossings, or
one of these three Reidemeister moves.

Proof. The idea is to break up your triangle move into lots of smaller triangle moves. This turns into a lot of
casework, but let’s get the idea. Suppose that we take E and replace it with A,B two edges via a triangle
move. Look at the projection of this triangle move into the plane. This is a triangle– so subdivide this into
smaller triangles so that at every step, the edges E,A,B only encounter at most 1 edge each.
If E encounters an edge, and A B do not, then this is the first Reidemeister move.
If E does not encounter an edge, and one of A and B do, then this is the first Reidemeister move.
If E does not encounter an edge, and both A and B encounter the same edge, then this is the second
Reidemeister move.
If E does encounter an edge, and one of A and B do, this is just an ambient move.
If E does encounter an edge, and A and B both encounter different edges, then this is the third Reidemeister
move. ∎

This will make our lives much easier, as we will only have to deal with knot diagrams from here on out.
When we refer to knots, we will call them K. Likewise, as knots are determined by their knot diagrams, we
will call the knot diagram K as well. Here is an example of two knot diagrams that are equivalent to one
another via a sequence of R-moves

R3 R1 R1

We unfortunately don’t have such a good way to tell knot diagrams apart. However, we have a few good
tools to get us started.

Definition 3.0.9 A knot invariant is a set X and a function f ∶K →X , where the value of the f(K) is independent of the
diagram of K.

The idea is that we can come up with a quality (or invariant) that is associated to each knot, and if two knots
return different values under the same invariant, then they cannot be related to each other via ambient isotopy.
Let’s see an example:

3.0.1 3-colorability and Fox p-colorings

We call the individual segments in a knot diagram arcs and any place where arcs meet to be crossings. We
note that each crossing is the meeting of 3 arcs- one arc that goes over, and two arcs that meet “under". For
the 3-coloring invariant, we choose 3 colors, say Red, Green. We label the arcs of our knot with the colors
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with the following rules: At each crossing the 3 arcs that meet must all be of the same color, or of 3 different
colors.

A knot is called 3-colorable if the above conditions are met, and at least 2 colors are used.

How do we show that 3-colorability is an invariant of knots? We can check that if a knot is 3-colorable, then
any Reidemeister move of that knot is still 3 colorable. One we check this, it is evident that 3 colorability
is an invariant property of knots. We can use this property to show that the unknot is not equivalent to the
trefoil.

Theorem 3.0.10 The Unknot is not deformable to the trefoil.

Proof. We first have to show that the 3-coloring invariant, is in fact an invariant. Suppose a knot is three
colorable. Then we would like to show that when we apply a Reidemeister move to part of the knot, the knot
remains 3 colorable. Fortunately for us, Reidemeister moves alter a knot locally and only effect one small
section of the knot. ∎

Unfortunately, 3 colorability is not a very powerful invariant. 3-colorability maps knots into a two element
set- either “3-colorable" or “not 3-colorable". This is pretty terrible, as there are surely more than 2 different
knots. In other words, this knot invariant can tell us only if knots are different, not if they are the same.

We can generalize this idea of the Fox p-coloring. Let p be a prime number, and consider the field Z/pZ. We
label the arcs of our knot diagram 0,1,2,3, . . . p − 1 according to the following rule: At each crossing, let x
be the value of the arc going over, and y and z the arcs that went under each crossing. We require

2x − y − z ≡ 0 mod p

If there exists a coloring that uses at least 2 different numbers and satisfies the above condition, the knot is
called n-colorable. This is equivalent to a linear algebra condition when you work over a finite field.

3.1 Jones Polynomial

In this lecture, we will construct a invariant returns a polynomial for each link. We start by talking about
smoothings of crossings.

Definition 3.1.1 Let ci be a crossing in a diagram L. We say that we have given ci the 0-smoothing or 1-smoothing if we
replace ci with one of the smoothings of the crossing below.

Figure 3.3: Crossing

Figure 3.4: 0-smoothing

Figure 3.5: 1-smoothing

Definition 3.1.2 Let L be a link diagram. let {c1, c2, . . . cn} be the set of crossings for L. Give each crossing ci the ei
smoothing, where e1 ∈ {0,1}. Then we call this diagram a smoothing of L and write Le1e2...en .
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Figure 3.6: K

Figure 3.7: K000

An example of a trefoil and it’s 000 smoothing is given in Figure ??.

The idea behind the Jones Polynomial is simple. We will take a large link, and decompose it into smaller
links. By keeping track of our decomposition, we will generate an invariant of a link. Let’s start by assigning
a polynomial to a simple link. The polynomial for the unlink is simply

J(U) = q−1
+ q1

Now the goal is to create a way to break down a link into a bunch of unlinks while simultaneously keeping
track of these decompositions. We have already “computed” the Jones Polynomial for every link with 0
crossings. Suppose that we have computed the Jones polynomial for every link diagram with n − 1 crossings.
Let K be a link with n crossings and pick some crossing cn in the link. Let K0 and K1, be the two
smoothings of c1. Then K0 and K1 are both links with n − 1 crossings, and therefore have associated to
them polynomials J(K0) and J(K1). We then define the Jones polynomial of

J(K) = J(K0) − qJ(K1)

We need one more rule to compute the Jones Polynomial: if K1 and K2 are links, and K3 =K1 ⊔K2 is the
disjoint link made of K1 and K2, then

J(K3) = J(K1)J(K2)

We therefore have inductively defined a polynomial for every link. Now we want to show that this polynomial
is an invariant of the link-i.e., if two link diagrams vary only by a Reidemeister move, then they produce
the same polynomial (up to a change of sign or shift in degree). Let’s check it for the first Reidemeister
move.

Theorem 3.1.3 The Jones Polynomial is an invariant of the link, up to a shift in q degree and sign.

Proof. The idea is to show that the three Reidemeister moves only change the Jones polynomial of a link by
a degree of q or by a sign change. We will show the invariance for each of the R-moves.

1. We show invariance under the first R-move.

J

⎛
⎜
⎜
⎝

� �⎞
⎟
⎟
⎠

= J

⎛
⎜
⎜
⎝
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⎟
⎟
⎠

− qJ

⎛
⎜
⎜
⎝

� �� �� �
⎞
⎟
⎟
⎠

= J

⎛
⎜
⎜
⎝
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⎟
⎟
⎠

− q(q + q−1
)J

⎛
⎜
⎝
� �⎞⎟

⎠

= −q−1J

⎛
⎜
⎜
⎝

� �⎞
⎟
⎟
⎠

2. We show invariance under the second R-move.
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With the relationships � �� �= � �� �and

J
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we perform the computation of the second Reidemeister move:
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3. We show invariance under the third R-move. This one follows from the second Reidemeister move.
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⎞
⎟
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⎟
⎟
⎟
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∎

We now have shown that the Jone’s polynomial is an invariant of the knot up to a sign and a multiple of q.
There is a way to correct this shifting. If we assign an orientation to the knot, we can now label crossings in
two different ways, as in the below figure
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Let n+ and n− count the number of + and − crossings respectively. We see that if we multiply our J
polynomial by a factor of (−1)n−qn+−2n− that this new polynomial now a complete invariant of the knot.
If we try and compute the Jone’s polynomial of a knot by continually taking 0 and 1 resolutions, we see that
we reach every possible smoothing of the knot. This means that if our original knot diagram has n crossings,
there are 2n different resolutions of the knot. We see that for each 1 resolution the knot contains, it picks up
factor of −q. This gives us a simpler way to compute the jones polynomial. The Jones polynomial is given by

∑
i∈{0,1}n

(−q)∣i∣J(Ki)

where Ki means the resolution where the crossings are given by the string i, and ∣i∣ counts the number of
times 1 appears in the string i. Let’s do a sample computation. We start by creating a cube of resolutions.� �� �� �� 

100

� �� �� �� �� �� 
110� �

� 
000

� �� �� �� 
010

� �� �� � � �� �� 
101

� �� �� �� �� �� �� �� 
111� �� �� �� 

001

� �� �� �� �� �� 
011

Each vertex on the cube is a smoothing of the knot, and the smoothings are ordered from left to right in
columns corresponding to the number of 0 smoothings chosen. We draw an arrow between two vertices if
they differ by just a single place in their smoothing. We now create a cube that lists each resolution’s Jone’s
polynomial times (−q)i, where i is the column the polynomial lies in.

q(q + q−1)2 q2(q + q−1)1

(q + q−1)3 q(q + q−1)2 q2(q + q−1)1 q3(q + q−1)2

q(q + q−1)2 q2(q + q−1)1

We now can compute the unnormalized Jones polynomial: it is just the alternating sum of the columns of
this cube. That is, the unnormalized Jones polynomial of the trefoil is (q + q−1)3 − 3q(q + q−1)2 + 3q2(q +
q−1)3 − q3(q + q−1)2 = q−2 + 1 + q2 − q6.
One last thing to notice about the Jones polynomials– it is multiplicative with respect to knot connect
sum.

Definition 3.1.4 Given two knots oriented knots K1 and K2, define their connect sum to be the knot K1#K2 where we
delete a small segment of K1 and K2, and glue them by their boundaries in an orientation preserving way.

Claim 3.1.5 Up to a multiple of q and sign, J(K1#K2) = J(K1)J(K2).

Proof. The cube of resolutions that we’ve drawn out is a product of the cube of resolutions for K1 and the
cube of resolutions for K2. ∎

3.1.1 Seifert Surfaces

But do these polynomials mean anything? One way that we can see these polynomials take form geometrically
if via Seifert Surfaces.
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Definition 3.1.6 Let L be a link. A Seifert Surface for L is a connected, compact, oriented, embedded surface whose
boundary is L.

Now, a given link L may have many different Seifert surfaces; one can see that given a Seifert surface, you
can modify it by adding on a handle and obtain a new Seifert surface. This makes it seem like this may not
be such a good tool for studying links.

Theorem 3.1.7 Let L be a link. Then there exists a Seifert surface for L.

Proof. This one is pretty to write out, but pretty easy to draw, so we are going to do that instead! The idea
is to assign an orientation to the knot. Apply a resolution to each crossing so that the orientations of the
resolution are compatible with the orientation of the knot. This will give you a bunch nested disks. Each
crossing now corresponds to a twisted handle that connects the boundary of one disk to the next.
Here is another way to visualize this: given a knot diagram, and a resolution of the crossings in n orientation
preserving way, we get a collection of circle. For each circle Si, label the spots xij of the resolutions
connected to this disk. Now to create a surface, let Di be a collection of disks. Arrange the disks so that Di

has no variation in the z axis direction, so that the projection πxy(∂Di) = Si, and that the z value of Di is
higher than Dj whenever π(∂Di) ⊂ π(Dj).
Then connect the points xij and xkl with a twisted handle whenever they came from the resolution of the
same crossing. This gives us a ∎

This will give you a surface which has first homology generated by each of its boundary components. Now,
instead of working in R3, we are going to work in S3. Let M be the Seifert surface.

Claim 3.1.8 There is a nondegenerate form g ∶ H1(M) ×H1(S ∖M) → Z. In particular, the first
homology of the Seifert surface its complement are isomorphic.

Proof. In fact, we prove something a little different: given any handlebody in S3, there is a pairing with its
complement. In fact, a handlebody and its complement are homeomorphic.
Notice a handlebody is just a 3-ball with some disks which are identified to each other. Given a handlebody,
pick disks which fill in the “donut-holes” of the handlebody, which lie in the complement. Cutting the
complement along these holes gives us a 3 ball. The number of disks that we need to cut will be equal to the
genus of the handlebody, which determines handlebodies up to homeomorphism.
Let α be a generator of homology of the handlebody, and β an element in H1(S ∖M). Then the generator
α corresponds to some disk, and the (signed) intersection of β and the disk associated to α gives us the
symmetric form.

∎

There is an easier way to think of his form. We think of elements of H1(M) and H1(S ∖M) as begin repre-
sented by oriented loops. Then the pairing is the linking number between the two loops, which is the number
of positive crossings, less the number negative crossings in a projection of the two loops.

Claim 3.1.9 The orientation of the Seifert surface gives us two different maps H1(M)→H1(S3 ∖M).

Proof. As the Seifert surface is orientable, there is a normal direction at every point of the Seifert surface. One
can take any loop representing a class of homology, and push it off the Seifert surface into the complement.
This gives us a loop in the complement, which represents an element of homology in H1(S3 ∖M). Of
course, if we use the other normal, we get a different map. ∎

Definition 3.1.10 Let K be a knot. Let M be a Seifert surface for the knot, and i+ ∶M → S/M be an inclusion. Then there
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is a map, called the Seifert Matrix

A ∶H1(M)→H1(M)

α ↦ g(α, i+(α))

The determinant of the map ∆(K) ∶= det(tA−At) (where t is a dummy variable) is called the Alexander
Polynomial.

Claim 3.1.11 The Alexander polynomial is a knot invariant up to sign and a multiple of t.

Proof. We show that the alexander polynomial is generated by a Skein relation as well. However, this is a
Skein relation that involves reversing the crossings. At a given crossing (with orientation), denote the + and
− and 0 resolutions of a particular crossing by

We like to prove that the Alexander polynomial as defined here satisfy the Skein relation

∆(K+
) −∆(K−

) = (1 − t)∆(K0
)

In order to prove this, we pick a very special basis for the homology, given by a certain realization of the
Seifert Surface.
Draw the Seifert surface as before, with a collection of disks and bridges between them. On every disk. there
are bridges that point “outward” to lower disks, and bridges that point inward to “higher”disks. On the disk
Di, let Tik be a labeling of the outward pointing bridges in a cyclic order.
Then we can give a basis for H1(Σ) in the following way: Let vik be the loop that starts on the disk Di, goes
down the Tik crossing, goes over to the Ti(k+1) crossing, then goes up back to the disk Di.Note here that we
do not take these indexes to be cyclic– there is no entry vin, where 1 ≤ k ≤ n. This is because we can write
vin as ∑k vik.
Now, let’s put an ordering on the basis so that vij comes before vmn if i ≤ m, and then if j ≤ n. In this
ordered basis, what does the matrix A look like? The entry aij is nonzero if and only if the loops link– but
notice that vij and vmn link if and only if i =m and j = n ± 1. From this, we know that A splits as a bunch
of matrices along the diagonal, one block for every disk Di, and has entries only on the diagonal, super
diagonal, and sub diagonal.
For ease of notation, let B = A + tAT , and let A±, and A0 denote the matrices to the +,− and 0 resolution of
a knot on the T11 crossing. Now, we would like to compute det(B+) − (detB−). By minor expansion, we
have that

det(B+
) − det(B−

) =b+11[B
+
11] − b

+
12[B

+
12] − (b−11[B

−
11] − b

−
11[B

−
11])

Now, look at b±11. One of these entries will be 0, and the other one will necessarily be 1 + t. Why is this?
Becuase the crossing T +11 and T +12 either both contribute ±1 to the linking of v11, or they contribute opposite
signs. Similarly, T −11 and T −11 contribute opposite signs to the crossing, or a ± 1. We work on the case
where b−11 = 0, the other case is similar argument.

=b+11[B
+
11] − b

+
12[B

+
12] + b

−
11[B

−
11]

Now, b−12 and b+12 are the same, as v11 and v12 interact only at the the T12 crossing, which is unchanged.
Similarly , the matrices B±

11 are the same.

=b+11[B
+
11] − b

+
12([B

+
12] − [B−

12])

=b+11[B
+
11]

=(1 − t)[B+
11] = (1 − t)[B0

]

∎
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3.2 Braids

Braid groups describe one particular way that we can tangle stings together. Intuitively, a braid is a tangle
of strings that go from top to bottom, that is they proceed in only one direction. The stings of the braid
can’t intersect, and they can’t loop back on themselves. A braid is like a permutation with some additional
information encoded about the order that you took the permutations in, and we will formally see later why
this is an accurate description of the braid group.

Definition 3.2.1 A collection of functions fi ∶ [0,1]→ R3 , i ∈ 1,2, . . . n is called a braid on n strings and is written as β
if the following properties hold:

1. fi(x) ∈ {x} ×R2

2. fi(x) ≠ fj(x) for all i ≠ j

3. Im fi is a finite collection of line segments

4. fi(0) = (i,0,0) and fi(1) = (σ(i),0,1) where σi ∈ Sn a permutation function.

As one can see, this definition says that a braid is much like a knot, in that it can be represented by a finite
collection of line segments, and that it does not intersect itself. How a braid is different than a knot (or a
link) is that braids “travel" in one direction, that is, if we orient the braid by the orientation [0,1], we see
that the image of the braid is oriented against a single axis. We will choose this axis to be the x axis, and
hence going along the braid means “going left to right." Like knots, we are interested in braids up to the
equivalence of ambient isotopy; when we draw a braid, we really are just picking a representative of the
equivalence class of braids on n strings that are isotopic to this one. We will denote the set of all equivalence
classes of braids with n strings as Bn. Here are some equivalent braids.

∼

How can we make a group out of braids? The way that designed our braids, we can form a group operation
by braid “stacking”, that is placing one braid on top of each other.

Definition 3.2.2 Let β1, β2 ∈ Bn, where β1 = {fi(t)} and β2 = {f ′i(t)}. Define the new braid β3 = {gi} where

gi = {
fi(2t)/2 ∶ t ∈ [0,1/2)
fσ(i)

′(2(t − 1/2)/2 + 1/2 ∶ t ∈ [1/2,1]

In abuse of notation, when we write fi/2 we mean a scaling of the x axis by 1/2
Then we define a group structure on Bn by β1 ○ β2 = β3 Then call Bn the braid group on n strings.

Of course, we need to check that the axioms for groups are satisfied. The composition of braids is clearly
associative: scaling along the x axis is an isotopy of braids, and other than scaling across the x axis, the
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3.2 Braids 61

braids (β1β2)β3) and β1(β2β3) are the same.

○ =

We also want to make sure that there exists an identity element and inverse elements. The identity element is
easy to come up with: it is simply a set of horizontal strands that have no twisting.

As for inverses, you can have them too. Simply take the braid β you want to inverse, and reflect it along the
yz plane, to get a braid β−1 This should give a braid that, when composed with it’s original, is equivalent
to the identity. Therefore, we are justified in calling this object the braid group on n strings. Ideally, we
would want a group presentation for this object, so we wouldn’t have to draw pictures whenever we wanted
to talk about a braid. It’s pretty easy to get generators for the braid group: all braids are generated by the
sequential crossing of strands that are adjacent to each other. If we want to designate any braid, we need only
the braid word which corresponds to the sequence of strands being crossed. We write the letter σi to mean
the crossing of the i and i + 1 strands in a right over left fashion. Therefore, the braid given in Figure ?? is
given by the braid word σ1σ1σ1σ

−1
2 , or sometimes written σ3

1σ
−1
2 . With these braid words, we see that the

stacking of braids corresponds to the concatenation of braid words.

Exercise 3.2.3 Show that the mirror braid of β has braid word given by β−1

Notice that a braid is not uniquely identified by its braid word: in fact, there are many different braid words
that represent the same braid. For instance, the braid σ3σ1 is the same as the braid σ1σ3. However, the
relations giving braids are based mostly on the relations for knots.

Theorem 3.2.4 The braid group has a finite presentation as

⟨σ1, . . . , σn−1 ∣ ∀∣i − j∣ ≥ 2, σiσj = σjσi, σiσi+1σ
−1
i = σ−1

i+1σiσi+1⟩.

Recall that a group presentation is the “free-est” group on specified generators that satisfies the given relations.
One way of thinking about this is that a group presentation of G specifies a map Fn → G, where Fn is a the
free group. The normal closure of the specified generators gives us the kernel of this map. Notice that every
finitely generated group has a presentation by the same generators.

Proof. The generators represent the elementary crossings of the i and i + 1 strands. These are basically the
Reidemeister moves written out as algebraic relations.
Notice, that braid isotopy is almost the same as knot isotopy, except that the first Reidemeister move is
forbidden!
The first type of braid relation corresponds to the “ambient isotopy.” It says that if you have two crossings,
and those crossings are some distance from each other, then you can commute them past each other because
they share no stings in common. This means that crossings “commute at distance”.
The second Reidemeister move is already encoded into the braid group by default: this is just the inverse
relation between generators.
The third Reidemeister move, if you write it down, is the relation that we have written above.
With these relations, we capture the R-moves, and therefore all the additional structure in the braid group. ∎
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Notice that if I add in the additional relation that σ2
i = 1, then I get the permutation group. Interesting!

Now, we would like to use braids to study knots. Notice that every braid β gives a knot by gluing its ends
together in a circle.

Definition 3.2.5 Given a braid β, we say the braid closure of β, β̄, is the link created by adding loops from the upper
endpoints of the braid to the lower endpoints of the braid in a non-crossing fashion. If β̄ =K, we say that
β is a braid word for K.

Given a knot K it is possible to have a lot of different braid words. For instance, both the braid 1 on one
string and the braid σ1 on 2 strings are braid words for the unknot.

Theorem 3.2.6 Suppose that β1, β2 are two different braid words for K. Then they are related by the following Markov
moves:

• Concatenation: replace β with α−1βα.

• Reidemeister 1: Replace β on n strings with βσn on n + 1 strings.

Proof. There are 2 types of isotopy which are not taken into account by the braid relations: the first one is
the isotopy which does not change crossings in the diagram, but possibly moves the braid outside of the
“braided region”. This means that part of the braid moves up over the top of the braided region, and then
shows up again on the bottom. You can check that this is the same as concatenating the braid with a word.
The other type of isotopy that we have not taken into account is the first Reidemeister move. Suppose we
want to do a first Reidemeister move on a little segment. By applying many R2 moves, we can assume that
this Reidemeister move occurs on the nth string. By applying concatenation, we may assume that it occurs
at the end of the braid word. Then the Reidemeister move looks like adding a little loop to the end of the
braid. However, adding a little loop to the end of the braid is the same as adding an additional string with a
crossing, once we blow up the loop in size a bit. This shows why R1 can be expressed as the replacement of
β with βσn on n + 1 strings. ∎

So now we know that if we have to braid words, then we can algebraically manipulate one into the other.
This is really cool, because on the one hand we’ve reduced the problem of showing that two knots are the
same to an algebraic manipulation. On the other hand, you can prove that it is hard to show that two braid
words represent the same knot.
But, we do not know if a knot is necessarily representable by a braid.

Theorem 3.2.7
Alexander For every knot K there is a braid β with β̄ =K.

Proof. By our assumption about knots, there exists a linearization of the knot image. So, let’s pick a
linearization of the knot’s image so that K = ⋃iLi
Now, assign an orientation of the knot. Look at a planar projection (knot diagram), and pick a point in
the planar projection. If it is the case that each line Li has an orientation that agrees with the orientation
around the point, then we are done! But this is probably not the case. So, for every line segment Li which
disagrees with the orientation around a point x, use a bunch of R2 moves to replace it with 2 line segments
L′i and L′′i so that the left endpoint of L′i is the left endpoint of Li, the right endpoint of L′′i is the right
endpoint of Li, and L′i, L

′′
i have a common endpoint which is on the opposite side of x. Now, L′i and L′′i

have an orientation which agrees with x. Proceed with this process on every single line segment that has a
disagreeable orientation. This provides a knot diagram whose orientation is agreeable with x. ∎

So, this means that we can take every knot, and find a knot diagram which represents it. Notice that this
gives an extremely easy way to produce a Seifert surface, because all of the crossings get unoriented in the
same direction. From this piece of data, we should expect that the braid word gives us a purely algebraic way
of computing something like the Alexander polynomial for a knot! In fact, it does, but in order to stray away
from matrix manipulations for the rest of the course, we will not be going over this one.
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3.3 Fundamental Groups

Definition 3.3.1 Let X be a topological space, and x0, x1 ∈X be two points. A path in X with endpoints x0 and x1 is a
continuous function γ ∶ [0,1] → X with the property that γ(0) = x0 and γ(1) = x1. If x0 = x1, we say
that γ is a loop, and we call x0 the base point of those loops.

Definition 3.3.2 Let f0 ∶ X → Y and f1 ∶ X → Y be two different functions. A homotopy between f0 and f1 is a
continuous function H(x, t) ∶X → Y with the property that

H(x,0) =f0(x)

H(x,1) =f1(x).

If there is a homotopy between f0 and f1, we say that f0 is homotopic to f1 and write f0 ∼ f1.

Definition 3.3.3 LetX be a topological space and γ0 nd γ1 be two paths with endpoints x0, x1 ∈X . Then a path homotopy
from γ0 to γ1 is a homotopy between γ0 and γ1 such that

H(0, t) =x0

H(1, t) =x1.

We will usually represent a homotopy with this type of square diagram. One axis represents t, the homotopy
parameter, and the other one represents x, the loop parameter.

γ0

x0

γ1

x1

t

x

Claim 3.3.4 Path homotopy is an equivalence relation on paths from x0 to x1.

Proof. We need to show that path homotopy satisfies the three properties of an equivalence relation.

• (Reflexive) This one is the easiest. We can letH(x, t) = γ(x) for all t, and this will give us a homotopy
between γ and itself.

• (Symmetric) Suppose that H(x, t) is a homotopy between γ0 and γ1. Then H(x,1− t) is a homotopy
between γ1 and γ0.

• (Transitive) Suppose that H01(x, t) is a homotopy between γ0 and γ1, and H12(x, t) is a homotopy
between γ1 and γ2. Then define a new homotopy H02 by

H02(x, t) = {
H01(x,2t) t ∈ [0,1/2]

H12(x,2t − 1) t ∈ (1/2,1]
.

You should check that this gives us an honest continuous homotopy between γ0 and γ1.

∎

Because of this claim, we can talk about functions up to the equivalence relation of homotopy. If we are
interested in writing homotopy classes of a function, we will denote it with square brackets. Notationally,
γ0 ∼ γ1 implies [γ0] = [γ1].
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Definition 3.3.5 Let γ0, γ1 be two paths with base point x0. Then we define the composition loop

γ0 ⋅ γ1 ∶ [0,1]→X

x↦{
γ0(2t) t ∈ [0,1/2]

γ1(2t − 1) t ∈ (1/2,1]

which is again a loop that starts with base point x0.

Unfortunately, loop composition as written is not an associative operation. That is,

(γ0 ⋅ γ1) ⋅ γ2 ≠ γ0 ⋅ (γ1 ⋅ γ2)

Claim 3.3.6 Suppose that γ0 ∼ γ1 are two path homotopic loops, and β is another loop. Then γ0 ○ β ∼

γ1 ○β. In particular, the composition rule is well defined over equivalence classes of loops up to homotopy.

Proof. We just need to exhibit a homotopy between γ0 ⋅ β and γ1 ⋅ β. Here is a picture of that homotopy:

β

β

γ0

x0

γ1

x0H

t

x

∎

Claim 3.3.7 The composition rule is associative over equivalence classes of loops up to homotopy.

Proof. We need to show that (γ0 ⋅γ1)⋅γ2) ∼ γ0 ⋅(γ1 ⋅γ2) via homotopy. The idea is that you can reparameterize
the path in a homotopy; the only difference between these to paths is that

• The first goes through γ0 and γ1 at 4x speed, and then γ2 through double speed.

• The second goes through γ0 at double speed, and γ1, γ2 at 4x speed.

Define the following homotopy between (γ0 ⋅ γ1) ⋅ γ2) and γ0 ⋅ (γ1 ⋅ γ2).

H(x, t) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

γ0(4/(1 + t)x) x ∈ [0, (t + 1)/4)
γ1(4(x − (1 + t)/4)) x ∈ [(t + 1)/4, (t + 2)/4)

γ2(4/(2 − t)(x − (t + 2)/4)) x ∈ [(t + 2)/4,1]

This homotopy is given by a really nasty function, so let’s instead draw it as a picture so we have an actual
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idea of what it represents.

γ0 γ1 γ2

γ0 γ1 γ2

t

x

∎

Claim 3.3.8 The constant loop 1x0 has the property that

[1x0] ⋅ [γ] = [γ] ⋅ [1x0] = [γ]

for any loop γ based at x0.

Proof. We use the fact that the constant loop can be reparameterized to any length that we choose. We define
the homotopy as follows:

H(x, t) = {
x0 x ∈ [0, (1 − t)/2)

γ((2 − t)(x − (1 − t)/2)) x ∈ [(1 − t)/2,1]

Again, easier to represent with a picture.

γx0

γ

t

x

∎

Claim 3.3.9 Suppose that γ(t) is a loop. Define γ−1 to be the loop γ(−t). Then

[γ] ⋅ [γ−1
] = [1x0]

Proof. We need to exhibit a homotopy from the loops γ and γ−1 to the constant loop. A formula for this
homotopy is

H(x, t) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

γ(2x) x ∈ [0, (1 − t)/2)
γ(t) x ∈ [(1 − t)/2, (1 + t)/2)

γ(1 − 2x) x ∈ [(1 + t)/2,1]
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66 Knots

Which is, as usual , easier to visualize as a picture instead of a piecewise function.

γ−1γ

x0

t

x

∎

Definition 3.3.10 Let X be a topological space, and x0 a point in X . The fundamental group of X is

• π(X,x0) as a set is all equivalence classes of loops at x0.

• The group multiplication is loop composition.

The three claims that we made above prove that π(X,x0) is a group.

Definition 3.3.11 Let β be a path in X connecting x0 to x1. Define the change of base point map Fβ ∶ π(X,x1) →

π(X,x0) as follows. Suppose that γ is a path that has endpoints at x1. Then let

Fβ(γ) ∶= (β ⋅ γ ⋅ β−1
)

. This map is only dependent on the homotopy class of h.

Claim 3.3.12 The change of base point map is a group homomorphism.

Proof. We need to prove that the map preserves the group composition law. Here is a picture why! ∎

Claim 3.3.13 Suppose that X is path connected. Let x0, x1 ∈X be two points in X . Then π(X,x0) is
isomorphic to π(X,x1).

Proof. Since X is connected, it is clear that there is path β with endpoints x0 and x1. Check that the change
of base point map is in fact an isomorphism of groups by composing it with the reverse change of base point
map. ∎

Claim 3.3.14 Suppose that X and Y are two different space, and f ∶X → Y is a continuous function.
Then there is an induced group homomorphism f∗ ∶ π(X,x0)→ π(Y, f(x0)).
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Proof. Using a function f ∶X → Y , we can take loops inX and get loops in Y as follows. Let γ ∶ [0,1]→X
be a loop. Define

f∗(γ) = f ○ γ ∶ [0,1]→ Y.

We can check that if γ0 ∼ γ1, then it is the case that f∗(γ0) ∼ f∗(γ1). This is because if H(x, t) is a
homotopy between γ0 and γ1, then f(H(x, t)) is a homotopy between f∗(γ0) and g∗(γ1).
Finally, we need to check that f∗ respects the group operation, that is

f∗(γ0 ○ γ1) = f∗(γ0) ○ f∗(γ1)

∎

Claim 3.3.15 Suppose that f ∶X → Y and g ∶ Y → Z are two continuous maps. Then

g∗ ○ f∗ = (f ○ g)∗

Theorem 3.3.16 The fundamental group of the circle is Z.

Proof. To come later in this class. But the idea is that the number of times that a loop winds around the
origin tells you what number to map every loop to. ∎

3.4 Combinatorial Definition of the Fundamental Group

Now that we have an intutition for this thing in the topological sense, let’s mork out a combinatorial definition
for it. As usual, we work with simplicial complexes.

Definition 3.4.1 Let ∆ be a simplicial complex. Pick x ∈ ∆ to be a basepoint. Let E be the set of 1 simpleices in ∆, and
let F be the set of 2 simplieices. Define the group π1(∆, x) as strings of vertices xv1v2 . . . vkx, where
vivi+1 ∈ E for every pair. The group operation is given by concatenation, and we mod out the paths by the
following two equivalences:

vivi+1vi = vi

vivjvk = vi whenever vivjvk ∈ F

This certainly gives us a group, and in the case when we take the topological realization of ∆, we have that
this group si the same as π1(∆, x).
Notice that the higher cell structure (for n ≥ 3) does not affect the fundamental group!

Example 3.4.2 Let Cn be the n cycle. Then π1(Cn, x) = Z. We can prove as follows. Pick a vertex 1
next to x. You now define a morphism π1(Cn, x) → Z by sending each string xv1⋯vkx to the quantity
n+ − n− ∈ Z, where n+ is the number of times x1 shows up in the string, and n− is the number of times
that 1x shows up. The quantity n+ − n− is invariant under the equivalence of strings that we have defined
above.
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