1. Given the matrix

$$
A=\left(\begin{array}{ccc}
1 & -1 & 1 \\
-1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

(a) Find the eigenvalues and eigenvectors to A
(b) Find a set of orthonormal eigenvectors to A
(c) Find a matrix S such that $S A S^{\top}=D$, where D is diagonal.
(d) Compute A^{6}.

Solution

(a) For the first part, you just take the characteristic polynomial as usual. Look at

$$
\begin{aligned}
\operatorname{det}(A-\lambda \mathrm{id}) & =\operatorname{det}\left(\left(\begin{array}{ccc}
1 & -1 & 1 \\
-1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right)-\lambda \mathrm{id}\right) \\
& =\operatorname{det}\left(\left(\begin{array}{ccc}
1-\lambda & -1 & 1 \\
-1 & 0-\lambda & 1 \\
1 & 1 & 1-\lambda
\end{array}\right)\right) \\
& =(1-\lambda)^{2} \lambda+(-1)(1)(1)+(1)(-1)(1)-((1-\lambda)+(1-\lambda)+(-\lambda)) \\
& =\left(-\lambda+2 \lambda^{2}-\lambda^{3}\right)-4+3 \lambda \\
& =-\lambda^{3}+2 \lambda^{2}+2 \lambda-4
\end{aligned}
$$

Buy guessing a root that divides the last term 4, you find that 2 is a root of this polynomial. After doing polynomial long division you get

$$
=-(\lambda-2)\left(\lambda^{2}-2\right)
$$

which means that the other eigenvalues are $\sqrt{2}$ Let's start with the first eigenvalue.
i. With $\lambda=1$, you get that

$$
\left(\begin{array}{ccc}
-1 & -1 & 1 \\
-1 & -2 & 1 \\
1 & 1 & -1
\end{array}\right) \vec{v}=0
$$

Which you can solve by your favorite method to see that $(1,0,1)$ is a solution.
ii. With $\lambda=-\sqrt{2}$, you get that

$$
\left(\begin{array}{ccc}
1-\sqrt{2} & -1 & 1 \\
-1 & -\sqrt{2} & 1 \\
1 & 1 & 1-\sqrt{2}
\end{array}\right) \vec{v}=0
$$

You know that the second eigenvector needs to be perpendicular to the first, and is therefore of the form $(-1, \alpha, 1)$ for some value of α. By checking the second row, you might have guessed $(-1, \sqrt{2}, 1)$. And you would have been right.
iii. At this point, you're probably pretty tired of finding eigenvalues.

$$
\left(\begin{array}{ccc}
1+\sqrt{2} & -1 & 1 \\
-1 & \sqrt{2} & 1 \\
1 & 1 & 1+\sqrt{2}
\end{array}\right) \vec{v}=0
$$

By again checking the second row, you may have guessed $(-1,-\sqrt{2}, 1)$. Good guess! You now have 3 eigenvectors and 3 eigenvalues.
(b) The ones we found also happened to be orthonormal. Hoorah.
(c) Since we already have an orthonormal basis, we can use

$$
S=\left(\begin{array}{ccc}
1 & -1 & 1 \\
0 & -\sqrt{2} & \sqrt{2} \\
1 & 1 & 1
\end{array}\right)
$$

Of course, D is given by the eigenvalues

$$
D=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & \sqrt{2} & 0 \\
0 & 0 & -\sqrt{2}
\end{array}\right)
$$

(d) To do this, you can take

$$
S A^{6} S^{\top}
$$

2. Find the least squares fit quadratic polynomial to the following data

Solution: Like before, you are going to construct a map from the space of quadratic polynomials to \mathbb{R}^{4}. How do you construct this map?

$$
\begin{aligned}
A: \mathbb{P}^{2} & \rightarrow \mathbb{R}^{4} \\
f(x) & \mapsto(f(-1), f(0), f(1), f(2))
\end{aligned}
$$

Write A out as a matrix in the basis $\left\{1, x, x^{2}\right\}$

$$
A=\left(\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 2 & 4
\end{array}\right)
$$

You then can just solve the equation $\left(A^{\top} A\right)^{-1} A^{\top}(0,0,0,20)$ The solution is $(-3,1,5)$, so the polynomial is $5 x^{2}+x-3$
3. True or False!
(a) If \vec{v} is an eigenvector for T, and $T S=S T$, then \vec{v} is an eigenvector for S.
(b) The formula $\left\langle\binom{ a}{b},\binom{c}{d}\right\rangle=\operatorname{tr}\left(\begin{array}{ll}a & c \\ b & d\end{array}\right)$ defines an inner product of \mathbb{R}^{2}
(c) Suppose A and B are orthogonal matrices. Then $A+B$ is an orthogonal matrix.
(d) If A is orthogonal, and B is orthogonal, then $A B$ is an orthogonal matrix.
(e) Suppose A is orthogonal, and B is orthogonal. Then $A+B$ is invertible.
(f) Let $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}, \vec{v}_{4}\right\}$ be a orthonormal basis for \mathbb{R}^{4}. Then

$$
\left\{\frac{\sqrt{2}}{2} \vec{v}_{1}-\frac{\sqrt{2}}{2} \vec{v}_{2}, \frac{\sqrt{2}}{2} \vec{v}_{1}+\frac{\sqrt{2}}{2} \vec{v}_{2},-\vec{v}_{3}, \vec{v}_{4}\right\}
$$

is also an orthonormal basis for \mathbb{R}^{4}.

Solution:

(a) This is false! Let B be rotation by 90 degrees, and let A be the identity. Then $A B=B A$, but B has no eigenvectors. But everything is an eigenvector of A.
(b) False! it does not. Take

$$
\left\langle\binom{ 1}{-1},\binom{1}{-1}\right\rangle=0
$$

(c) False! Take id and - id.
(d) True! Recall orthogonal means that the transpose is the same as the inverse. Then

$$
(A S)^{\top}=S^{\top} A^{\top}=S^{-1} A^{-1}=(A S)^{-1}
$$

(e) False! Take id and - id.
(f) True! You can check using the rules for the dot product that this basis is again orthonormal.

