Practice Final 2

- 1. True or False!
 - (a) If $A = A^T$, then A is diagonalizable.
 - (b) If A and B have the same eigenvalues, then they are similar.
 - (c) If y_1 and y_2 are solutions to a linear first order nonhomogenous differential equation, then y_1 is a multiple of y_2
 - (d) If λ is a complex eigenvalue for a matrix A, then $\overline{\lambda}$, it's complex conjugate, is also a complex eigenvalue.
 - (e) Suppose $W[y_1, y_2](t) = 0$ for all t. Then y_1 and y_2 are linearly dependent.
 - (f) Suppose W_1, W_2 are subspaces of V. Then the union of W_1 and W_2 is a subspace of V.
 - (g) Let v be a vector in a vector space V. Then the set of all vectors perpendicular to v is a subspace of V.
 - (h) The set of all odd functions is a subspace of the space of continuous function from \mathbb{R} to \mathbb{R} .
 - (i) Every periodic function has a Fourier expansion.
 - (j) Suppose A is a 3×3 matrix with eigenvalues 1, 2, 3. Then A is diagonalizable.

Solution 1

- (a) True!
- (b) False! For example, the 0 matrix and the matrix with just a 1 in the upper right hand corner.
- (c) False! If it were homogeneous, it would be true.
- (d) True! If λ is a root of a polynomial, so is $\overline{\lambda}$.
- (e) False! Take for instance x^2 and x|x|.
- (f) False! It may not be closed under addition.
- (g) True!
- (h) True!
- (i) False, take for instance secant or something nasty like that.
- (j) True.
- 2. Find the general solution to the following differential equation:

$$y'' + 2ty' + y = te^{-t} + e^{-t}$$

Solution 2 First start by finding the solutions to the homogenous part. Solving the characteristic polynomial

$$\lambda^2 + 2\lambda + 1 = 0$$

yields a double root $\lambda = -1$. So we know that the solution to the homogenous part is of the form

$$y_h = c_1 e^{-t} + c_2 t e^{-t}$$

Now we have to make some guesses. Because the homogenous solution matches what we might normally guess, we have to bump everything up by a degree of 2. So our guess is going to be of the form

 $at^3e^{-t} + bt^2e^{-t}$

When we plug this into our differential equation we get

$$\begin{split} a(6te^{-t} - 3t^2e^{-t} - 3t^2e^{-t} + te^3e^{-t}) + b(2e^{-t} - 2te^{-t} - 2te^{-t} + t^2e^{-t}) \\ + 2(a(3t^2e^{-t} - t^3e^{-t}) + b(2te^{-t} - t^2e^{-t})) \\ at^3e^{-t} + bt^2e^{-t} = te^{-t} + e^{-t} \end{split}$$

Combining like terms gives us

$$(6a)te^{-t} + 2be^{-t} = te^{-t} + e^{-t}$$

or that $b = \frac{1}{2}$ and $a = \frac{1}{6}$.

3. Find the general solution to

$$y^{(4)} + 2y^{(3)} + 4y^{(2)} - 2y^{(1)} - 5y = 0$$

Solution 3 Guess that $e^{\lambda t}$ is a solution to this gives us the characteristic polynomial

$$\lambda^4 + 2\lambda^3 + 4\lambda^2 - 2\lambda - 5 = 0$$

This factors as

$$(\lambda+1)(\lambda-1)(\lambda+2\lambda+5)$$

The last part has roots $(-1 \pm 2i)$

This means that your fundamental solutions should be

$$y_1 = e^{-t}$$

$$y_2 = e^t$$

$$y_3 = e^{-t} \cos(2t)$$

$$y_4 = e^{-t} \sin(2t)$$

and a general solution is of the form

$$y = c_1 y_1 + c_2 y_2 + c_3 y_3 + c_4 y_4$$

4. Find the matrix for orthogonal projection onto the subspace spanned by

$$u = \begin{pmatrix} 1\\0\\0\\1 \end{pmatrix} \qquad \qquad v = \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix}$$