Name:
Setting up a Surface integral. Let $f(x, y, z)=x^{2}+y^{2}+z^{2}$. Consider the surface parameterized by $\vec{r}(u, v)=\langle u, u+v, 1\rangle$.
where the parameters u and v vary as

$$
\begin{aligned}
& 0 \leq u \leq 1 \\
& 0 \leq v \leq 1
\end{aligned}
$$

Set up an integral computing the integral of f over the given surface.

$$
\begin{aligned}
d S= & \mid \vec{r}_{u}\left\langle\vec{r}_{v}\right| d u d V \\
= & |\langle 1,1,0\rangle x\langle 0,1,6\rangle| d u d v \\
= & |\langle 0,0,1\rangle| d u d J=d u d v \\
& \int_{0}^{1} \int_{0}^{1}\left(u^{2}+(u+v)^{2}+1^{2}\right) d u d v
\end{aligned}
$$

Flux Integral through a surface I. Compute the flux of the vector field $\vec{F}=\langle x, y, z\rangle$ through the surface parameterized by

$$
\vec{r}(u, v)=\langle u, u+v, 1\rangle
$$

where the parameters u and v vary as

$$
\begin{aligned}
& \begin{aligned}
0 & \leq u \leq 1 \\
0 & \leq v \leq 1
\end{aligned} \\
& \text { From befire } \quad \vec{r}_{u} \times \vec{r}_{s}=\langle 0,0,1\rangle \\
& \iint \vec{F} \cdot \hat{n} d S= \iint \vec{F} \cdot \vec{r}_{u} \times \vec{r}_{r} \text { dud } \\
&= \int_{0}^{1} \int_{0}^{1}\langle u, u+v, 1\rangle \cdot\langle 0,0,1\rangle d u d v \\
&= \int_{0}^{1} \int_{0}^{1} 1 d u d v=1
\end{aligned}
$$

Flux Integral through a surface II. Compute the flux of the vector field $\vec{F}=\langle x, y, 0\rangle$ through the unit sphere.

$$
\begin{aligned}
& \operatorname{div} \vec{F}=2 \text {. Sine the sphere is a closed sofferes } \\
& \iint \vec{F} \vec{F} d S=\iiint_{\text {diu }} \vec{F} \text { dud }=2 \text {. vol spae } \\
& x_{x} y^{4} t^{2}=1=8 / 3 \pi
\end{aligned}
$$

Bonus Problem: Worth no points! Let $f(x, y, z)$ be a vector field in 3 variables. Compute the quantity $\Delta f:=\operatorname{div}(\operatorname{grad}(f))$.
We say that f is harmonic if $\Delta f=0$. Show that whenever f is harmonic, it has no local maxima or minima.

