Quiz, Nov. 13
NAME:
Setting up a Surface integral. Let $f(x, y, z)=x^{2}+y^{2}+z^{2}$. Consider the surface parameterized by $\vec{r}(u, v)=\langle u, u+v, 1\rangle$.
where the parameters u and v vary as

$$
\begin{aligned}
& 0 \leq u \leq 1 \\
& 0 \leq v \leq 1
\end{aligned}
$$

Set up an integral computing the integral of f over the given surface.

Flux Integral through a surface I. Compute the flux of the vector field $\vec{F}=\langle x, y, z\rangle$ through the surface parameterized by

$$
\vec{r}(u, v)=\langle u, u+v, 1\rangle
$$

where the parameters u and v vary as

$$
\begin{aligned}
& 0 \leq u \leq 1 \\
& 0 \leq v \leq 1
\end{aligned}
$$

Flux Integral through a surface II. Compute the flux of the vector field $\vec{F}=\langle x, y, 0\rangle$ through the unit sphere.

Bonus Problem: Worth no points! Let $f(x, y, z)$ be a vector field in 3 variables. Compute the quantity

$$
\Delta f:=\operatorname{div}(\operatorname{grad}(f))
$$

We say that f is harmonic if $\Delta f=0$. Show that whenever f is harmonic, it has no local maxima or minima.

