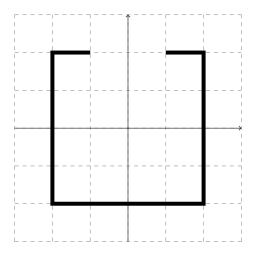
Quiz, Nov. 6

NAME:


Line Integral. Compute the line integral of $\langle y, x \rangle$ over the curve representing the boundary of a square with corners at (-1, -1), (1, -1), (-1, 1) and (1, 1).

Flux Integral, I. Set up, but do not compute, flux of the vector field

 $\langle 3x+1,2\rangle$

through the line segment between (1,0) and (0,1).

Flux Integral, II. Give the flux of the vector field $\langle x^2, 0 \rangle$ through the curve drawn below. (The grid drawn is a unit grid.)

Bonus Problem. Worth no points! If $\vec{F} = \langle P, Q \rangle$, let the perpendicular field for \vec{F} be $\vec{F}^{\perp} := \langle Q, -P \rangle$

Relate the curl of \vec{F} to the divergence of \vec{F}^{\perp} , and state why Green's theorem and the divergence theorem are related for these two vector fields.