Quiz, Nov. 6
Name:
Line Integral. Compute the line integral of $\langle 0, x\rangle$ over the curve C parameterized by

$$
\vec{r}(t)=\langle 3 \cos t, 3 \sin t\rangle
$$

where t goes between 0 and 2π.
\bigoplus

$$
\left.\begin{array}{l}
\operatorname{corlF}=\frac{d}{d x} x-\frac{d}{d y} 0=1 \\
\Rightarrow \oint \vec{F} \cdot d r=\iint_{R} \operatorname{crl} \vec{F} d A=\iint_{R} 1 d A
\end{array}\right)=\pi(3)^{2} .
$$

Flux Integral, I. Set up, but do not compute, an integral giving the flux of the vector field

$$
\left\langle 4 x, 2 y^{2}+x\right\rangle
$$

through the curve $\left\langle t^{2}, t+1\right\rangle$, where t goes between 0 and 5 .

$$
\begin{aligned}
& \vec{r}=\left\langle t^{2}, t+1\right\rangle \\
& \vec{r}=\langle 2 t, 1\rangle \\
& \vec{n} \cdot d s=\langle 1,-2 t\rangle d t
\end{aligned}
$$

$$
\begin{aligned}
& \int \vec{F} \cdot \hat{n} d s= \\
& \int\left\langle 4 t^{2}, 2(t+1)^{2}+t^{2}\right\rangle\langle 1,-2 t\rangle d t \\
& =\int 4 t-2 t\left(2(t+1)^{2}+t^{2}\right) d t
\end{aligned}
$$

Flux Integral, II. Give the flux of the vector field $\langle x, 0\rangle$ through the curve drawn below. (The grid drawn is a unit grid.)

$$
\begin{aligned}
& \operatorname{div} F=1 . \oint_{a v b} \vec{F} \cdot \hat{r} d s=\iint \operatorname{div} F d A=12 \\
& \int_{b} \vec{F} \cdot \hat{r} d s=\int\langle x, 0\rangle \cdot\langle 0,1\rangle d s=0 \\
& \Rightarrow \quad \int_{a} \vec{F} \cdot \hat{r} d s=12 .
\end{aligned}
$$

Bonus Problem. Worth no points! If $\vec{F}=\langle P, Q\rangle$, let the perpendicular field for \vec{F} be

$$
\vec{F}^{\perp}:=\langle Q,-P\rangle
$$

Relate the curl of \vec{F} to the divergence of \vec{F}^{\perp}, and state why Green's theorem and the divergence theorem are related for these two vector fields.

