Quiz, Nov. 6
Name:
Line Integral. Compute the line integral of $\langle 0, x\rangle$ over the curve C parameterized by

$$
\vec{r}(t)=\langle 3 \cos t, 3 \sin t\rangle
$$

where t goes between 0 and 2π.

Flux Integral, I. Set up, but do not compute, an integral giving the flux of the vector field

$$
\left\langle 4 x, 2 y^{2}+x\right\rangle
$$

through the curve $\left\langle t^{2}, t+1\right\rangle$, where t goes between 0 and 5 .

Flux Integral, II. Give the flux of the vector field $\langle x, 0\rangle$ through the curve drawn below. (The grid drawn is a unit grid.)

Bonus Problem. Worth no points! If $\vec{F}=\langle P, Q\rangle$, let the perpendicular field for \vec{F} be

$$
\vec{F}^{\perp}:=\langle Q,-P\rangle
$$

Relate the curl of \vec{F} to the divergence of \vec{F}^{\perp}, and state why Green's theorem and the divergence theorem are related for these two vector fields.

