Name:

Line Integral. Compute the line integral of $\langle 0, x \rangle$ over the curve C parameterized by $\vec{r}(t) = \langle 3\cos t, 3\sin t \rangle$

where t goes between 0 and 2π .

Flux Integral, I. Set up, but do not compute, an integral giving the flux of the vector field $\langle 4x, 2y^2 + x \rangle$

through the curve $\langle t^2, t+1 \rangle$, where t goes between 0 and 5.

Flux Integral, II. Give the flux of the vector field $\langle x, 0 \rangle$ through the curve drawn below. (The grid drawn is a unit grid.)

Bonus Problem. Worth no points! If $\vec{F}=\langle P,Q\rangle$, let the perpendicular field for \vec{F} be $\vec{F}^{\perp}:=\langle Q,-P\rangle$

Relate the curl of \vec{F} to the divergence of \vec{F}^{\perp} , and state why Green's theorem and the divergence theorem are related for these two vector fields.