Using Green's theorem. Use Green's theorem to compute the line integral of the vector field $\langle-y, x\rangle$ over the drawn semi-ellipse. (Hint: You can close this up to a closed curve by adding in the line between $(2,1)$ and ($-2,1$). The area of an ellipse is $\pi a b$, where a and b are minor and major axis.)

Notice that

$$
\begin{aligned}
& \oint_{C} \vec{F} \cdot d r=\int_{A} \text { ant } \vec{F}=\int_{A} 2=-\frac{2 \cdot 1 \cdot \frac{\pi}{2}=z \pi}{\prime \prime} \\
& S_{A}^{\prime} F d r+S_{B} \vec{F} \cdot d r=S_{A} \vec{F} \cdot d+\int_{-2}^{2} A-1, t \cdot 0\langle 1,0\rangle d t=\int_{-2}^{2}-1 d t+S_{A} \vec{F} \cdot d
\end{aligned}
$$

Computing Flux. Compute the flux of the vector field $\langle x, y\rangle$ through the curve t varies between 0 and $\pi / 2$.

$$
\begin{aligned}
& \int \vec{F} \cdot \hat{n} d s \\
& \left.\int_{0}^{\pi / 2} h \cos t, \sin t\right\rangle \cdot\langle\cos t, \sin t) d t \\
& =\pi / 2 .
\end{aligned}
$$

$$
\begin{aligned}
& \hat{n}=\langle\cos t, \sin t\rangle \\
& d s=1 d t
\end{aligned}
$$

Divergence Theorem. Compute the flux of the vector field $\langle x, y\rangle$ through the curve drawn below.

Divergence Th

$$
\begin{aligned}
\operatorname{div} \vec{F} & =1+1=2 \\
\oint_{c} \vec{F} \cdot \hat{n} d s & =\iint_{R} \operatorname{div} \vec{F} \cdot d A=\iint_{R} 2 \cdot d A=26 .
\end{aligned}
$$

