Find the Potential

Find the potential of the vector field $\left\langle 1+e^{x+y}, 1+e^{x+y}\right\rangle$. Then compute the integral of this vector field over curve given by $\left\langle t^{2}+t+\sqrt{t}, t-2 t^{3}\right\rangle$ where t goes between 0 and 1 .

Applying Green's Theorem

Compute the line integral of the vector field $\left\langle-y+x^{3}, x+y\right\rangle$ over the following curve starting at $(1,-1)$ and ending at $(-1,-1)$. Hint: You can close up the curve to bound a region by adding in another curve from $(-1,-1)$ to $(1,-1)$.

Applying Green's Theorem II

Compute $\iint_{R} 2 x d A$ over the shaded region below. Notice that $2 x=\operatorname{curl}\left\langle 0, x^{2}\right\rangle$.

