Quiz, Oct. 30
Name:
Identifying Vector Fields. Match the following vector fields to their plots.

$$
\begin{aligned}
& \langle x, y\rangle \\
& \langle x, x\rangle \not \subset
\end{aligned}
$$

(a)

(c)

$$
\begin{gathered}
\langle x y, 0\rangle \\
\langle y, 0\rangle
\end{gathered}
$$

(b)

(d)

Line Integral of a function. Set up but do not compute the integral of the function $f(x, y)=x y$ along the curve C parameterized by

$$
\begin{aligned}
& x(t)=t \\
& y(t)=\frac{1}{t}
\end{aligned}
$$

where t goes between $1 / 2$ and 2.

$$
d s=\sqrt{1+\left(\frac{1}{t^{2}}\right)^{2}} d t
$$

$$
\int_{\frac{1}{2}}^{2} f\left(t, \frac{1}{t}\right) d s=\int_{\frac{1}{2}}^{2} 1 \cdot \sqrt{1+\frac{1}{t}} d t
$$

Line Integral of a vector field. Integrate the vector field $\vec{F}(x, y)=\langle x, y\rangle$ along the curve C parameterized by

$$
\begin{aligned}
& x(t)=t \\
& y(t)=2 t-1
\end{aligned}
$$

Where t goes from 0 to 3 .

$$
d r=\langle 1,2\rangle
$$

$$
\begin{aligned}
& \int\langle x, y\rangle \cdot\langle 1,2\rangle d t \\
& =\int_{0}^{3}\langle t, 2 t-1\rangle \cdot\langle 1,2\rangle d t \\
& =\int_{0}^{3} t+4 t-2 d t=\frac{3}{2} t^{2}-2 t=\frac{45}{2}-6 .
\end{aligned}
$$

Bonus Problem. Worth no points! Let

$$
\vec{F}=\left\langle\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}} \cdot\right\rangle
$$

Show that $\int_{C} \vec{F} d r=0$ if and only if C does not go around the origin.

