Identify the Vector Field. Mix and Match!

Line Integrals I. Compute the integral of the function $f(x, y)=x+y$ over the curve

$$
\begin{gathered}
x(t)=t \\
y(t)=2 t
\end{gathered}
$$

as t goes from 0 to 1.

Going Around in circles. Let $\vec{r}(t)=(a \cos (t), a \sin (t)$ parametrize a curve that draws a circle of radius a that wraps around the origin n-times. (This means that $0 \leq t \leq 2 n \pi$.) Consider the vector field

$$
\vec{F}=\left\langle\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle
$$

Draw a picture for the vector field, and compute

$$
\int_{C} \vec{F} \cdot d r
$$

