Quiz, Oct. 22
NAME:
Jacobian (6). Set up, but do not compute, an integral which computes the integral

$$
\iint_{D}(x+y) d x d y
$$

over the following domain D, using the coordinate change $u=x$ and $v=x+y$.

Triple Integral (7). Compute the integral of the function $f(x, y, z)=x$ over the region in the first octant bounded by $x+y+z \leq 1$.

Triple Integral (7). A cone is given by the region between $0 \leq z \leq 1-\sqrt{x^{2}+y^{2}}$. Set up an integral computing the volume of the cone using cylindrical coordinates. Your answer should be in the form of a triple integral. It may help to draw a picture first.

Bonus Problem. Worth no points! A function $f(x, y)$ is called harmonic if $f_{x x}+f_{y y}=0$. Show that if a function is harmonic on a compact region R, that the maximum of f must occur on the boundary of the region.
Harmonic functions are time-constant solutions to the heat equation

$$
\frac{\partial}{\partial t} f(t, x, y)=\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) f(t, x, y)
$$

which describes how a function $f(t, x, y)$ describing the tempurature at a point (x, y) at time t behaves. Why does it make physical sense that if we have a time-constant solution to this equation, the maximum must be achieved at the boundary of the region?

