

Name:
Maximizing a function. (8 Pts) Find the place where the function $f(x, y)=x^{2}+y^{2}$ is maximized on the region drawn below

Need to deed for critical prints

$$
\nabla f=\langle 2 x, 2 y\rangle
$$

$=0$ when $x=0, y=0$. Clecly a minimum.
Need to creek boundaries.

Maximum is 1.
Polar Coordinates. (4 Pts) Write an integral computes the area of the shaded region using polar coordinates.

$$
\begin{aligned}
& =\int_{\theta=0}^{\theta=\pi / 4} \int_{1=0}^{r=\cos \theta} r d r d \theta \\
& =\int_{0}^{\pi / 4} \frac{1}{2} \cos ^{2} \theta d r d \theta
\end{aligned}
$$

Double Integrals. (8 Pts) Write double integrals which compute the areas of each of the shaded regions:

Bonus Problem. Worth no points! Consider the function $f(r: \theta)=$. Without converting this function into (x, y) components, show that the directional derivatives

$$
D_{\langle\cos \theta, \sin \theta\rangle} f(r: \theta)
$$

are well defined at the origin. Then show that

$$
\nabla f \cdot\langle\cos \theta, \sin \theta\rangle \neq D_{\langle\cos \theta, \sin \theta\rangle}
$$

and conclude that this function is not differentiable.

