1. Polar Coordinates
(1) The Limacon is graphed by the polar equation

$$
r=1+c \sin \theta
$$

- What shape is this graph when $c=0$? When $c=0$ are equation is

$$
r=1
$$

giving us a circle

- Sketch a graph of this when $c=1$.

- What is does the graph of $r=\cos (\theta)$ look like?

θ	$r=1+\sin \theta$
0	1
$\pi / 2$	2
π	1
$3 \pi / 2$	0

- Describe how the Limacon changes as c goes to infinity.

C median

(2) Find the intersection points of the following curves:

$$
\begin{array}{r}
r_{1}=2 \cos \theta \\
r_{2}=2 \sin \theta
\end{array}
$$

$$
\begin{gathered}
2 \cos \theta=2 \sin \theta \\
\Rightarrow \theta=\pi / 4
\end{gathered}
$$

Or! whereas $r=0$.

- Graph these two polar equations to verify your solution.

- Find the area of the region enclosed in both curves.

$$
\begin{aligned}
\cos 2 \theta & =\cos ^{2} \theta-\sin ^{2} \theta \\
& =1-2 \sin ^{2} \theta \\
\Rightarrow \sin ^{2} \theta & =\frac{1-\cos 2 \theta}{2}
\end{aligned}
$$

$$
\begin{aligned}
\text { Area } & =\int_{\theta^{2}}^{\theta_{2}} \frac{1}{2} r^{2} d \theta \\
& =\int_{0}^{\pi / 4} \frac{1}{2} 4 \sin ^{2} \theta d \theta \\
& =2 \int_{0}^{\pi / 4} \frac{1-\cos 2 \theta}{2} d \theta \\
& =2\left(\left.\frac{1}{2} \theta\right|_{0} ^{\pi / 4}-\left.\frac{\sin 2 \theta}{4}\right|_{0} ^{\pi / 4}\right) \\
& =\frac{\pi}{4}-\frac{1}{2}
\end{aligned}
$$

Total Area is twine the red region

$$
n=\frac{\pi}{2}-1
$$

