Practice Midterm

Name:

Lines and Planes.

(a) The line $\ell(t)$ which is perpendicular to the z axis and goes through the point $(0,1,1)$.
(b) Find the equation of a plane containing both the z axis and the point $(0,1,1)$.
(c) Show that the line $\ell(t)$ is contained within the plane.

Parameteric Curves. A boy starts at the origin at time $t=0$ with a velocity of $\langle 1,1\rangle$. As walks, he spins a yo-yo. From time -2 to time 2 , the altitude of the yo-yo can be described by $t^{2}+1$.
(a) Give a parameterization for the position of the yoyo for times $-2 \leq t \leq 2$.
(b) Where does the yoyo maximize its speed?
(c) Compute the distance that the yoyo travels between $t=-2$ and $t=2$.

Tangent Planes, Min Max. Consider the function $f(x, y)=x^{2}-2 x y+y^{2}+3$.
(a) Find the tangent plane to the graph of this function $(1,1,3)$.
(b) What critical points does $f(x, y)$ have, and what type are they?
(c) Maximize the function $f(x, y)$ on the region $x^{2}+y^{2} \leq 4$.

Computations. Let $f(x, y)=x^{2}+y^{2}$. Suppose that we know that $\vec{r}(t)=\langle x(t), y(t)\rangle$ has derivatives

$$
\begin{aligned}
|\vec{r}(0)| & =0 \\
\left|\overrightarrow{r^{\prime}}(0)\right| & =1 \\
\left|\overrightarrow{r^{\prime \prime}}(0)\right| & =0
\end{aligned}
$$

Compute

$$
\frac{d^{2}}{d t^{2}} f(x(t), y(t))
$$

Contour Plots. Estimate the Gradient at each of the points marked with a square. Estimate the equation of the tangent plane at the point $(2,0,2)$.

Ants! An ant travels in $x y$ coordinates along the path $\left(3 t, t^{2}\right)$ from time 0 to 2 . It walks along a hill given whose altitude is given by $f(x, y)$. At time $t=1$, the ant notices that their rate of altitude change is

$$
\left.\frac{d}{d t} f(x(t), y(t))\right|_{t=1}=1
$$

and that their altitude is 3 .
(a) Estimate the value of f at the point $(6,3)$.
(b) Suppose further that the magnitude of the gradient $|\nabla f|_{(3,1)}$ is 2 . Find the gradient $\nabla f(3,1)$.

