Quiz, Sep 25

NAME:

Directional Derivatives (8 pts). Compute the gradient of

$$f(x,y) = x^2 - y^2$$

and use it to determine the directional derivative in the direction $\hat{u} = \langle \frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}} \rangle$ at the point (1, 1).

Derivatives and Contour Plots (6 pts).

- Mark with \circ a point on this contour plot where the gradient vector is $\langle 1, 0 \rangle$.
- Mark with \times a point on this contour plot where the derivative in the $\hat{u} = \langle 1, 0 \rangle$ direction is 0.

¹Be sure to think about both the direction and magnitude of the gradient; in particular, pay attention to the values of f.

Chain Rule. (6 pts) Let $x(t) = \cos(t)$ and $y(t) = \sin(t)$. Suppose that for all t, $\frac{d}{dt}f(x(t), y(t)) = 0$. Additionally, suppose that $|\nabla f| = 1$. Find the gradient vector at the point (1, 0).²

Bonus Problem. Worth no points! There is a landscape whose elevation is described by the function f(x, y). A hiker walks along a loop described by $\langle x(t), y(t) \rangle$. As they walk, they record the gradient vector of this hill, and use this to produce a new vector valued function

$$\vec{\kappa}(t) := \frac{\nabla f|_{(x(t),y(t))}}{\left|\nabla f|_{(x(t),y(t))}\right|}$$

(So, think of this as the function which records at time t the direction of the gradient that the hiker encounters.) The hike notices that

$$\kappa(t) = \langle \cos t, \sin t \rangle.$$

Argue why the hiker must have walked around a maxima or minima of f.

²Hint: Expand $\frac{d}{dt}f(x(t), y(t))$ using the chain rule. Notice that (x(0), y(0)) = (1, 0).