NAME:
Directional Derivatives (8 pts). Compute the gradient of

$$
f(x, y)=x^{2}-y^{2}
$$

and use it to determine the directional derivative in the direction $\hat{u}=\left\langle\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right\rangle$ at the point $(1,1)$.

## Derivatives and Contour Plots ( 6 pts).

- Mark with o a point on this contour plot where the gradient vector is $\langle 1,0\rangle .^{1}$
- Mark with $\times$ a point on this contour plot where the derivative in the $\hat{u}=\langle 1,0\rangle$ direction is 0 .


[^0]Chain Rule. (6 pts) Let $x(t)=\cos (t)$ and $y(t)=\sin (t)$. Suppose that for all $t, \frac{d}{d t} f(x(t), y(t))=0$. Additionally, suppose that $|\nabla f|=1$.
Find the gradient vector at the point $(1,0) .{ }^{2}$

Bonus Problem. Worth no points! There is a landscape whose elevation is described by the function $f(x, y)$. A hiker walks along a loop described by $\langle x(t), y(t)\rangle$. As they walk, they record the gradient vector of this hill, and use this to produce a new vector valued function

$$
\vec{\kappa}(t):=\frac{\left.\nabla f\right|_{(x(t), y(t))}}{|\nabla f|_{(x(t), y(t))} \mid}
$$

(So, think of this as the function which records at time $t$ the direction of the gradient that the hiker encounters. ) The hike notices that

$$
\kappa(t)=\langle\cos t, \sin t\rangle
$$

Argue why the hiker must have walked around a maxima or minima of $f$.

[^1]
[^0]:    ${ }^{1}$ Be sure to think about both the direction and magnitude of the gradient; in particular, pay attention to the values of $f$.

[^1]:    ${ }^{2}$ Hint: Expand $\frac{d}{d t} f(x(t), y(t))$ using the chain rule. Notice that $(x(0), y(0))=(1,0)$.

