## 1. Even More Derivatives

1.1. Using the Chain Rule, I. Suppose that $f$ has a minimum at $(0,0)$. Let $\vec{r}(t)=\langle a t, b t\rangle$ be a line traveling through the origin in the direction of $\langle a, b\rangle$. Show using the chain rule that

$$
\begin{aligned}
& f_{x}=f_{y}=0 \text { as ven ore at cititalpeint }\left.\quad \frac{d}{d t} f(\vec{r}(t))\right|_{t=0}=0 \\
& \left.\frac{d^{2}}{d t^{2}} f(\vec{r}(t))\right|_{t=0}>0 \\
& \begin{aligned}
\frac{d}{d t} f(x(t), y(t)) & =f_{x} \frac{d x}{d t}+f_{y} \frac{d y}{d t} \\
& =f_{x} \cdot a+f_{y} \cdot b \quad \frac{d}{d t} \frac{d}{d t} f(x(t), y(t))=\frac{d}{d t}\left(f_{x} \cdot a+f_{y} \cdot b\right) \\
& =0 .
\end{aligned} \\
& =f_{x x} a^{2}+2 f_{x y} a b+f_{y y} b^{2} \\
& \text { wis is always getter than } 0 \text { if }\left(2 f_{x y} b\right)^{2}-4\left(f_{x o p} f_{y y} b^{2}\right)<0 \\
& \Leftrightarrow 4\left(f_{y y}-f_{x \times f_{y y}}\right)<0 \Longleftrightarrow \text { a minimum. } \\
& \text { 1.2. Directional Derivatives. Compute the directional derivative } \\
& \left.D_{\left\langle\frac{\sqrt{3}}{2}, \frac{1}{2}\right\rangle}\left(x^{2}+y^{2}\right)\right|_{(0,1)} \\
& \left.D_{\left\langle\frac{\sqrt{3}}{2}, \frac{1}{2}\right\rangle}\left(x^{2}+y^{2}\right\rangle\right|_{(a,)}=\left.\nabla\left(x^{2}+y^{2}\right)\right|_{0,1} \cdot\left\langle\frac{\sqrt{3}}{2}, \frac{1}{2}\right\rangle \\
& =\left.\langle 2 x, 2 y\rangle\right|_{0,1}-\left\langle\frac{\sqrt{5}}{2}, \frac{1}{2}\right\rangle \\
& =1 \text {. }
\end{aligned}
$$

1.3. Finding Maxima and Minima. Find the point on the plane $z=2 x+y+1$ which minimizes the distance to $(1,0,2)$. Check that this matches the result from using the distance formula from the plane.
1.4. Gradient Vector.


Estimate the gradient vector at $(-1,-3)$, then use this estimate to compute the directional derivative in the $\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle$ direction at that point.

Gradient vector direction $\approx\langle-1,1\rangle$

$$
\text { Normalized } \frac{\nabla t}{|0 f|} \approx\left\langle-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle
$$

$$
\begin{gathered}
\text { Gond. vector length } \approx \frac{1}{\sqrt{2}} \\
\Rightarrow \nabla f \approx\left\langle-\frac{1}{2}, \frac{1}{2}\right\rangle . \\
D_{\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle} f=\nabla f \cdot\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle=0 .
\end{gathered}
$$

