1. Even More Derivatives

1.1. Using the Chain Rule, I. Suppose that f has a minimum at $(0,0)$. Let $\vec{r}(t)=\langle a t, b t\rangle$ be a line traveling through the origin in the direction of $\langle a, b\rangle$. Show using the chain rule that

$$
\begin{aligned}
& \left.\frac{d}{d t} f(\vec{r}(t))\right|_{t=0}=0 \\
& \left.\frac{d^{2}}{d t^{2}} f(\vec{r}(t))\right|_{t=0}>0
\end{aligned}
$$

1.2. Directional Derivatives. Compute the directional derivative

$$
\left.D_{\left\langle\frac{\sqrt{3}}{2}, \frac{1}{2}\right\rangle}\left(x^{2}+y^{2}\right)\right|_{(0,1)}
$$

1.3. Finding Maxima and Minima. Find the point on the plane $z=2 x+y+1$ which minimizes the distance to $(1,0,2)$. Check that this matches the result from using the distance formula from the plane.
1.4. Gradient Vector.

Estimate the gradient vector at $(-1,-3)$, then use this estimate to compute the directional derivative in the $\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle$ direction at that point.

