
1. Even More Derivatives

1.1. Using the Chain Rule, I. Suppose that f has a minimum at (0, 0). Let ~r(t) = 〈at, bt〉 be a line
traveling through the origin in the direction of 〈a, b〉. Show using the chain rule that
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1.2. Directional Derivatives. Compute the directional derivative

D〈
√

3
2 , 12 〉
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1.3. Finding Maxima and Minima. Find the point on the plane z = 2x + y + 1 which minimizes the
distance to (1, 0, 2). Check that this matches the result from using the distance formula from the plane.
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1.4. Gradient Vector.

Estimate the gradient vector at (−1,−3), then use this estimate to compute the directional derivative in the
〈 1√
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, 1√

2
〉 direction at that point.
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