## 1. A detailed Solution

1.1. Using the Chain Rule, I. Suppose that $f$ has a minimum at $(0,0)$. Let $\vec{r}(t)=\langle a t, b t\rangle$ be a line traveling through the origin in the direction of $\langle a, b\rangle$. Show using the chain rule that

$$
\left.\frac{d^{2}}{d t^{2}} f(\vec{r}(t))\right|_{t=0}>0
$$

This is a chain rule problem. Letting

$$
x(t)=a t \quad y(t)=b t
$$

we are asked to compute $\frac{d^{2}}{d t^{2}} f(x(t), y(t))$. Using the chain rule, we get

$$
\begin{aligned}
\frac{d^{2}}{d t^{2}} f(x(t), y(t) & =\frac{d}{d t}\left(\frac{d}{d t} f(x(t), y(t))\right) \\
& \left.=\frac{d}{d t}\left(f_{x} x^{\prime}(t)+f\right) y y^{\prime}(t)\right) \\
& =\frac{d}{d t}\left(a f_{x}+b f_{y}\right)
\end{aligned}
$$

Key Insight: $f_{x}$ and $f_{y}$ are functions of $x(t), y(t)$, so we again have to use the chain rule.

$$
\begin{aligned}
& =a\left(f_{x x} x^{\prime}(t)+f_{x y} y^{\prime}(t)\right)+b\left(f_{y x} x^{\prime}(t)+f_{y y} y^{\prime}(t)\right) \\
& =f_{x x} a^{2}+2 f_{x y} a b+f_{y y} b^{2}
\end{aligned}
$$

Key Insight: Think of this expression as a polynomial of $a$. Then it is always greater than zero if the polynomial has no zeros, which occurs when the discriminant of the polynomial is negative. The discriminant of this polynomial (of $a$ ) is

$$
\left(2 f_{x y} b\right)^{2}-4\left(f_{y y} b^{2}\right)\left(f_{x x}\right)
$$

which simplifies to $-b^{2}\left(f_{x x} f_{y y}-\left(f_{x y}\right)^{2}\right)$, which is the determinant used to find if $f$ has a maximum, minimum or saddle point at a critical point. Since we know that we have a minimum, this gives us $f_{x x} f_{y y}-\left(f_{x y}\right)^{2}>0$, so the polynomial $f_{x x} a^{2}+2 f_{x y} a b+f_{y y} b^{2}$ has no root, and is always positive. It follows that

$$
\left.\frac{d^{2}}{d t^{2}} f(\vec{r}(t))\right|_{t=0}>0
$$

