1. Gradients and Chain Rule

1.1. Gradient Calculation. Jack and Jill walk up the hill $f(x, y)$, to fetch a pail of water. The path Jack takes is

$$
\begin{gathered}
r(t)=(3 t, 2 t) \\
s(t)=(-2 t, 3 t)
\end{gathered}
$$

and the path that Jill takes is

Jack reports that at time 0,

$$
\left.\frac{d}{d t}(f(3 t, 2 t))\right|_{t=0}=1
$$

and Jill reports that

$$
\left.\frac{d}{d t}(f(-2 t, 3 t))\right|_{t=0}=2
$$

- What is the gradient vector ∇f at the origin.
- Suppose additionally that $f(0,0)=2$. What is the tangent plane to the graph of f at $(0,0,2)$?

1.2. Chain Rule I. Use the chain rule, and the function $m(x, y)=x y$ to show the product rule in single variable calculus:

$$
(f g)^{\prime}=f^{\prime} g+g^{\prime} f
$$

1.3. Using the Chain Rule, II. Suppose we are told that

$$
\begin{aligned}
& \text { ute } \begin{array}{c}
\left.(\nabla f)\right|_{(x, y)=(1,1)}=\langle 2,3\rangle \\
\left.\begin{array}{c}
\frac{d}{d t} f\left(t^{2}+1, t^{2}+1\right) \\
x^{\prime}(t)
\end{array}\right|_{t=0}(t)
\end{array} \\
& \begin{aligned}
\left.\frac{d}{d t} f\left(t^{2}+1, t^{2}+1\right)\right|_{t=0} & =\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t} \\
& =2 \cdot 0+3 \cdot 0=0 .
\end{aligned}
\end{aligned}
$$

Compute

