1. Gradients and Chain Rule

1.1. Gradient Calculation. Jack and Jill walk up the hill $f(x, y)$, to fetch a pail of water. The path Jack takes is

$$
r(t)=(3 t, 2 t)
$$

and the path that Jill takes is

$$
s(t)=(-2 t, 3 t)
$$

Jack reports that at time 0,

$$
\left.\frac{d}{d t}(f(3 t, 2 t))\right|_{t=0}=1
$$

and Jill reports that

$$
\left.\frac{d}{d t}(f(-2 t, 3 t))\right|_{t=0}=2
$$

- What is the gradient vector ∇f at the origin.
- Suppose additionally that $f(0,0)=2$. What is the tangent plane to the graph of f at $(0,0,2)$?
1.2. Chain Rule I. Use the chain rule, and the function $m(x, y)=x y$ to show the product rule in single variable calculus:

$$
(f g)^{\prime}=f^{\prime} g+g^{\prime} f
$$

1.3. Using the Chain Rule, II. Suppose we are told that

$$
\left.(\nabla f)\right|_{(x, y)=(1,1)}=\langle 2,3\rangle
$$

Compute

$$
\left.\frac{d}{d t} f\left(t^{2}+1, t^{2}+1\right)\right|_{t=0}
$$

