1. More On Derivatives
1.1. Using the Chain Rule, I. Let $s(t)=f(x(t), y(t))$, and assume that

$$
\left.\frac{d s}{d t}\right|_{t=3}=5
$$

Additionally, suppose that you are told that

$$
\begin{array}{rlrl}
\left.\frac{\partial f}{\partial x}\right|_{(0,2)} & =1 & \left.\frac{\partial f}{\partial y}\right|_{(0,2)} & =1 \\
\left.\frac{d x}{d t}\right|_{t=3} & =3 & \\
y(3) & =0 & x(3)=2
\end{array}
$$

What is $y^{\prime}(3)$ ?

$$
\frac{d s}{d t}=\frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}
$$

at $t=3$

$$
\begin{aligned}
S=\left.\frac{d s}{d t}\right|_{3} & =\left.\left.\frac{\partial f}{\partial y}\right|_{(0,2)} \frac{d x}{d t}\right|_{t=3}+\left.\left.\frac{\partial t}{\partial y}\right|_{(0,2)} \frac{d y}{d t}\right|_{t=3} \\
S & =1 \cdot 3+\left.1 \cdot \frac{d y}{d t}\right|_{t=3} \\
& \left.\Rightarrow \frac{d y}{d t}\right|_{t=3}=2
\end{aligned}
$$

1.2. Chain Rule in Proofs. The function $f(x, y, z)=x^{2}+y^{2}+z^{2}$ measures the distance squared of a point from the origin. Show that if $\vec{r}(t)=\langle x(t), y(t), z(t)\rangle$ with $\vec{r}(0)=\langle 1,0,0\rangle$, and $\vec{r}(t) \cdot \vec{r}^{\prime}(t)=0$, that $f(x(t), y(t))=1$ for all $t$.
Conclude that the curve $\vec{r}(t)$ is contained in the unit sphere.
Want to show $f(\vec{r}(t))=1$

$$
\begin{aligned}
& \Leftrightarrow \quad f(\vec{r}(0))=1 \quad \text { and } \frac{d}{d t} f(\vec{r}(t)) \\
& \Leftrightarrow \frac{\partial f}{\partial x} \frac{d x}{d t}+\frac{\partial f}{\partial y} \frac{d y}{d t}+\frac{\partial f}{\partial z} \frac{d z}{d t} \\
& \\
& =\left.2\langle x, y, z)\right|_{r(t)} \cdot \vec{r}^{\prime}(t) \\
& \\
& =2 \vec{r} \cdot \vec{r}^{\prime}(t)=0
\end{aligned}
$$

1.3. Implicit Differentiation. Let $f(x, y)=x^{3}+y^{2}$. Suppose that we have a curve $\vec{r}(t)=\langle x(t), y(t)\rangle$ which traces out a level set of $f$ so that

$$
f(x(t), y(t))=2
$$

Additionally, suppose that

$$
\langle x(0), y(0)\rangle=\langle 1,1\rangle .
$$

Finally, assume that $x^{\prime}(0)=1$. Find the velocity vector $\vec{v}(0)$.

$$
\begin{aligned}
& \frac{d f}{d t}=0 \quad \text { as } f(x(t), y(t)) \text { is constant } \\
& \text { so } \quad \begin{aligned}
\frac{d f}{d t} & =f_{x} x^{\prime}+f_{y} y^{\prime} \\
& =\left.3 x\right|_{<1,1)} \cdot x^{\prime}(0)+\left.2 y\right|_{1, D} y^{\prime}(0) \\
O & =301+20 y^{\prime}(0) \Rightarrow y^{\prime}=-3 / 2
\end{aligned} .
\end{aligned}
$$

Notice that the velocity vector of $\vec{r}(t)$ is tangent to the 2 -level curve at the point $(1,1)$. Use this information to find a tangent line to level set at $(1,1)$.

$$
l(t)=\langle 1,-3 / 2\rangle t+(1,1) .
$$

