Name:
Continuity (5pts). Show that the function $\frac{x+y}{\sqrt{x^{2}+y^{2}}}$ is not continuous at the origin. (One way to do this is to take limits along $x=y$ and $x=-y$.)
Tum methods:

- First, Let: Look of $f(t, t)$. This is $\frac{t+t}{\sqrt{t^{2}+e^{2}}}=\frac{2 t^{2}}{\sqrt{2 t^{2}}}$. $\left.\begin{array}{l}\text { If } t \text { it positive, this is } H \text { so } \lim _{t \rightarrow 0^{+}} f(t)=+\sqrt{2} \\ \text { If } t \text { is wogutic, this is }-1 \text { so } \lim _{t \rightarrow 0^{-}} f(t)=-\sqrt{2}\end{array}\right\} \Rightarrow$ us coutinuars.
- If we compare this to $f(t,-t)$ we have $\lim _{t \rightarrow 0} f(t,-t)=\lim _{t \rightarrow 0} \frac{t t}{\sqrt{z t^{2}}}=0$.

So, this is again showmen ut to he equal to $\lim _{t \rightarrow 0} f(t, t)$.

Tangent Plane (8 pts). Find the equation for the tangent plane to $f(x, y)=x y$ at the point $(1,1,1)$.

$$
\begin{aligned}
& \left.\frac{\partial f}{\partial x}=y\left|\begin{array}{l}
\left.\frac{\partial f}{\partial x}\right|_{(4,)}=1 \\
\frac{\partial f}{\partial y}=x \\
\left.\frac{\partial f}{\partial y}\right|_{(1,1)}=1
\end{array}\right| \begin{array}{l}
\text { Normal } \quad \text { of tanguy place is }\left\langle f_{x}, f_{y,}-1\right\rangle \\
\text { Normal of tangent place at }(1,1,1)=\left\langle\left. f_{x}\right|_{(1,1)},\left.f_{y}\right|_{(1,1)},-1\right\rangle
\end{array}\right\}=\langle 1,1,-1\rangle
\end{aligned}
$$

Point on place $=\langle 1,1,1\rangle$.
Eq of plane is $\vec{n} \cdot\left\langle\vec{v}-p_{0}\right\rangle=0 \leadsto\langle 1,1,-1\rangle\{\langle x, y, z\rangle-(1,1,1\rangle)=0$

$$
x+y-z-1=0
$$

Contour Plots. Consider the function of 2 variables whose contour graph is drawn below.

- 4 Points: Mark all local maximum, minima, or saddle points of f on the contour plot.
- 3 Points: Write the equation of the tangent plane at the point $(-1,1,1)$.

The point $(-1,1)$ is a saddle point
\Rightarrow tangent plus is Il to $x y$ place
\Rightarrow tangent plane is $z=1$.

Bonus Problem. Worth no points! Consider the piecewise defined function

$$
f(x, y)=\left\{\begin{array}{rr}
0 & \text { Whenever } x \neq y^{2} \text { or } x=y=0 \\
1 \quad \text { Whenever } x=y^{2} \text { and } x \neq y \neq 0
\end{array}\right.
$$

Show that this function is continuous along every line approaching the origin. Also show that this funciton is not continuous.

