1. More On Derivatives

1.1. Using the Chain Rule, I. Let $s(t)=f(x(t), y(t))$, and assume that

$$
\left.\frac{d s}{d t}\right|_{t=3}=5
$$

Additionally, suppose that you are told that

$$
\begin{array}{rlrl}
\left.\frac{\partial f}{\partial x}\right|_{(0,2)} & =1 & \left.\frac{\partial f}{\partial y}\right|_{(0,2)} & =1 \\
\left.\frac{d x}{d t}\right|_{t=3} & =3 & \\
y(3) & =0 & x(3) & =2
\end{array}
$$

What is $y^{\prime}(3) ?$
1.2. Chain Rule in Proofs. The function $f(x, y, z)=x^{2}+y^{2}+z^{2}$ measures the distance squared of a point from the origin. Show that if $\vec{r}(t)=\langle x(t), y(t), z(t)\rangle$ with $\vec{r}(0)=\langle 1,0,0\rangle$, and $\vec{r}(t) \cdot \vec{r}^{\prime}(t)=0$, that $f(x(t), y(t))=1$ for all t.
Conclude that the curve $\vec{r}(t)$ is contained in the unit sphere.
1.3. Implicit Differentiation. Let $f(x, y)=x^{3}+y^{2}$. Suppose that we have a curve $\vec{r}(t)=\langle x(t), y(t)\rangle$ which traces out a level set of f so that

$$
f(x(t), y(t))=2 .
$$

Additionally, suppose that

$$
\langle x(0), y(0)\rangle=\langle 1,1\rangle .
$$

Finally, assume that $x^{\prime}(0)=1$. Find the velocity vector $\vec{v}(0)$.

Notice that the velocity vector of $\vec{r}(t)$ is tangent to the 2 -level curve at the point $(1,1)$. Use this information to find a tangent line to level set at $(1,1)$.

